Lab 2a. Introduction R & RStudio

Smit, A. J.
University of the Western Cape

2022-08-01

Table of contents
I Introduction tO R ..ottt 3
2 Getting Started ... 3
3 W Y R e 5
3.1 What Youll Find Hereooooniiii e 5
4 Learnin@ R ... e 5
5 AFew Words on Style ... 6
6 RSEUAIO oot 6
6.1 General SEttingsoouiiiuniit et 7
6.2 Customising APPearancCeuiuuntittiitiiiiin it 7
6.3 Configuring Panesuuuiiiiii i 8
6.4 The RProOjJect . ..ottt 9
6.5 The Panes of RStudiooooiiiiiiii e 11
6.5.1 Source (Script) EAitorot 11
6.5.2 COMNSOLE ...ttt 12
6.5.3 Environment and History Panes.................ooooiiiiiiiiiiii . 12
6.5.4 Files, Plots, Packages, Help, and Viewer Panes......................... ... 13
7 Basic Calculations ... 14
Addition, Subtraction, Multiplication, and Divisioncoooiiin. 14
EXPONENTS . ..ttt 15
Mathematical CONSTANESooiuiitit et 15
Logarithmsoooo o 15
TriGONOMELIY ...ttt 15
7.1 The Assignment OPeratoruueeeuuueeetuine et eiiaeeeeannne. 15
7.2 More About the Consoleooviiiiiiiiii i 17
8 Built-in R FUNCHONSottt e 17
9 Getting Help . ..o 18
9.1 RS Help SYstem ...ttt 18
9.2 What if the R Help System is Not Enough? ...t 19
10 Introducing SCIAPLS ..« vvuunt ettt ettt e e et eees 20

10.1 Vectors: One-Dimensional Dataooouinitni e 20

10.2 Matrices: Two-Dimensional Tables ...t 21
10.3 Arrays: Higher-Dimensional Data ..., 24
10.4 Data Frames: Tabular, Mixed-Type Datacoooiiiiiiiiiiiiiiin. .. 24
10.5 Principles of Vectorisationuuuiiiiiiiiiiiiiiie i, 25
10.6 Organising YOUr SCIipt.........ooouuiiiiiiiiiii i e 26
10.6.1 Header COMMENTSttt ettt et e e et e eeiaeeeens 26

10.6.2 Logical BIOCKSuuue 26

10.6.3 Saveresultst 27

11 Installing Packagesoiiiiiiiiii e 27
12 Introduction to R Markdown in Quarto ..ottt 28
12.1 Whatis Markdown? e 28
12.2 R Markdown: Integrating Code and Textoooiiiiiiiiiiiiiii oot 28
12.3 Using R Markdown in QUartocoouuiiiiiiiiiniiiiiiiiiiiiiineeeens 29
12.3.1 Important Featureso 29

12.3.2 Document Structureoviiuiiiiiiiiiiii i 29

12.3.3 Example Skeletonoooouiiiiiii 29

12.3.4 Supported Output Formatsooeiuiiiiiiiiiii i 32

12.3.5 Rendering the Documentoooiiiiiiiiiiii i 33

12.4 More Detailed informationoooiuiiiiiiiiiiiiiii i 33
12.5 Why Use R Markdown?oooiiiiiiiiii i e 33

13 The End ..o e 34
Bibliographyo 34

“Ignorance more frequently begets confidence than does knowledge.”

— Charles Darwin

“My mind seems to have become a kind of machine for grinding general laws out of large
collections of facts.”

— Charles Darwin

@ Data For This Lab

All the data needed for BDC334 are at the link below:

o All course data files — data folder

https://drive.google.com/drive/folders/17wOshp348ZWikPPTyt4fqrKY2OmaV0FR?usp=sharing

1 Introduction to R

| Serious R:

If you are serious about making R an inseparable part of your scientific life, you'll want
to use Hadley Wickham (and his colleagues) book R for Data Science (2e) as the core R
reference and practice those R concepts on your very own problem.

A Gentler Comprehensive Introduction: If Hadley’s book feels like overkill, you are
welcome to skip ahead to the BCB Honours R core module for a targeted approach to
learning R, with a focus on data relevant to biologists and ecologists.

2 Getting Started

R is a software environment for statistical computation and graphics. It is free and open-
source. It is a programming (or “scripting” or “coding”) language used by research
statisticians, academics and their students, and by data “scientists” across a wide array or
industries and organisations. To use it, you will need to install two pieces of software, both
of which can be downloaded for free:

* R, which is the actual software that does the computations and graphics.
» Chose your operating system, and select the most recent version, 4.5.2.
« RStudio, the Integrated Development Environment (IDE), which is what R runs within.
» You must have R installed to use RStudio; RStudio by itself cannot do anything, like a
car without it engine.

https://r4ds.hadley.nz
https://tangledbank.netlify.app/BCB744/intro_r/01-RStudio.html
http://cran.r-project.org/
http://www.rstudio.com/

»

i
C

® © @ RConsole B ml G

~ Q

R version 4.5.1 (2025-06-13) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin2@

R

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

"citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
"help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

[R.app GUI 1.82 (8536) aarch64-apple-darwin20]

[History restored from /Users/ajsmit/.Rapp.history]

>

Figure 1: The R programme outside of RStudio.

ece The Tangled Bank - master - RStudio
° - o = Goto e/funcion §-168- 5 : .
° @ 11-mapping_quakes.qmd = Gt =
Render on save |\ Q ° a- TP . Sril -l e L @ - @
Staged Staws Path
O preamble.tex
. » | Global carthqu
e B A/ALmusings.htmi
Load the Natur B A/ALmusings.qmd
quakes_sf - quakes Zoomingis B A/ALmusings.tex
155 (coor Selecting areas. B A/ALmusings.typ
WGs8i_pro3 Cropping AIJAIs_view_of humanit
view_of_humanity.pdf
quakes_sf_trans ¢ st_transforn(quakes_sf, NE_proj | Seting the map.
head(quakes_sf_trans o 0 BCB744/intro_r/01-RStudio.qmd
@ 8CB744/intro_r/11-mapping_quakes.qmd
@ BDC334/Lab-01-introduction.qmd
BDC334/Lab-R_RStudio.qmd
®> head(quakes_sf_trans) 8 s
sinple feature collection with 6 features and 3 fields site/search.json
Geometry type: POINT O site/sitemap.xmi
Dinension: XY site/Al/AI_explaining _humans.pdf
Bounding box: xmin: 1047820 ymin: -2923232 xmax: 1361900 ymax: -2047755 B site/Al/ALmusings.html
crs “projenatearth +lon_6-170 ;
#A tibble: 6« & O site/AALmusings.pdf
s op s T 0 _site/BCB744/intro_r/01-RStudio.html
cints cdbl> <int> <boInT [n]> D _site/BCB744 intro_r/01-RStudio_files/figure-htmi/fg-ggplot2-Lsvg
1S 48 e (110007 -2299735) B _site/BCB744 Intro_r/01-RStudio_files/figure-html/ggplot2-1-1.svg
260 42 15 (1047820 -2316276) P e S o
3 e s 43 (3230w -2923232) _
PR TR 19 (1113132 -2017755) Files -
s o 4 11 (1136619 -2203735)
6 195 4 12 (1361900 -2210349) ° -0 5 & vore -
T an going to nake a map of the Fiji region and plot the spatial location of the earthquakes, and A Name size Modified
scale the points indicating the earthquakes’ magnitude by their intensity (‘mag’ t
. » _02-github.qmd axs Mar 6, 2023, 7:01 AM
01-Rstudio.qmd 18KE Jul27,2025,9:09 AM
\ ot() 02-working-with-data.md 325K Feb7,2025,8:32 AM
‘ f(data - sw_pacific_cropped, colour - N, fill P——— PO ROREERGERT
. con_s(data - quakes_sf_trans, aes (colour - nag, size - mag
<rar 03-workflow._files
107:219 Setting the mapping limis n **ggplotz = oplot: No completions avaiable. Quarto
DR CE: L L < 04-workflow.qmd 405K Jan 29,2025, 3:00 PM
Console =0 05-graphics.amd 191K Feb3, 2025, 7:04 AM
06-faceting.amd 6K Jan 29,2025, 3:00 PM
R-
07-brewing.amd 10.1K8 Jan 29,2025, 3:00 PM
R version 4.5.1 (2025-06-13) — “Great Square Root" 08-mapping.qmd 9.4KB Feb3,2025,7:04 AM
Copyright (C) 2025 The R Foundation for Statistical Computing
Cn O Eb WD oRs 09-mapping_style.md 66KB Jan 29,2025, 3:01PM
10-mapping_maturalearth.qmd 9.4KB Feb7,2025,8:34 AM
R is free softuare and cones with ABSOLUTELY NO WARRANTY. .
You are welcone to redistribute it under certain conditions. L mapping qakes.qmd L2 okE 27 202 L 2 AN
Type “license()' or licence()" for distribution details. 12-tidy.qmd 173K8 Jan 29,2025, 3:01 PM
Natural Language support but ruming in an English locale 13-tdler.qmd 15K lan29, 2025, 3:01 M
14-tidiest.qmd 19K Jan29, 2025, 301 PM
R is a collaborative project with many contributors
Type “contributors()* for nore infornation and] 200 SeL P AG)
“citation()’ on how to cite R or R packages in publications. 16-functions.qmd S4KE Jan 29,2025, 3:02 M
deno()" for some denos, "help()" for on-line help, or BT D eI
“Relp.start()" for an HTML browser interface to help. 18-dates.qmd 3k Jan 29, 2025, 3:02 PM

Type 'q()" to quit R.
> x & seq(0, 2, by = 0.01)

>y e 2% sin(2 % piox (x - 1/8)
> plot(x, y)

Figure 2: RStudio with R inside of it.

3 WhyR?

R is becoming increasingly popular. It is used, as I mentioned earlier, across academia as
well as in industry. In particular, it has become especially popular among biologists and
ecologists, since much of the analysis we want to carry out is readily executable within R. This
is facilitated by the many add-on packages that ecologists have developed over the years.

Additionally, R is extremely powerful for the creation of graphics and figures, enabling us to
visualise all of the data we have analysed. These graphical outputs are essential for effectively
communicating our findings in publications.

3.1 What You’ll Find Here

In the following section, I will walk you through the basic use and operation of R. We
shall look at several things, such as how the user interface works—in other words, how the
RStudio IDE is organised. I will also show you how to set up a new Rproject, which is quite
an essential step in keeping your work organised, especially as your analyses grow more
complex over time.

We will cover how to create scripts, and how to save those scripts so that you can run them
again in the future. This means that not only will you be able to reproduce your own analyses,
but also modify or expand them as required. I will demonstrate how to create a few basic
figures, so you will become familiar with visualising your data.

Quite importantly, for your assignments and research over the coming weeks, you will use
R as a system within which you can both write your scripts for data analysis, and also
produce the documents required for communicating your findings. This includes output
that is suitable for sharing with colleagues, whether in the form of reports, presentations, or
publications.

The ability to integrate your code and your written explanation—what is often referred to as
‘reproducible research’—is a particular strength of R and RStudio. You will find that learning
these skills is not only essential for your studies here, but also valuable for future scientific
work.

4 Learning R

Learning R is like learning another language—a spoken language like French or Finnish. R
is also a language, and it requires a huge amount of practice and skill to achieve fluency in
it. The most important thing when you're learning R for the first time is to be patient with
yourself. Many of the steps will require repeated iterations, working through examples, and,
most crucially, solving your own problems. This process will help you become more familiar
with R.

You are not expected to become fluent in it straight away, but the intention during this
third-year course is that you will no longer feel apprehensive about using R. The key aspect,
therefore, is to learn patience and to learn how to help yourself. That really is the only way
to learn R: to have your own problem, which you are able to solve using some of the skills
that I will teach you.

RStudio has a large number of useful keyboard shortcuts. A list of these can be found using
a keyboard shortcut - the keyboard shortcut to rule them all:

o On Windows: Alt + Shift + K
¢ On Mac: Option + Shift + K

The RStudio team has developed a number of “cheatsheets” for working with both R and
RStudio. This particular cheatsheet for “Base” R will summarise many of the concepts in
this document. (“Base” R is a name used to differentiate the practice of using built-in R
functions, as opposed to using functions from outside packages, in particular, those from
the tidyverse. More on this later.)

5 A Few Words on Style

When writing scripts, it is good practice to follow a style guide. For example, where do spaces
go? Do I use tabs or spaces? Do I orefer underscores or CamelCase when naming variables?
No style guide is “correct,” but it helps to be aware of the general approaches people take.
For me, the most important aspect is that you are consistent within your own code. This is
something that we will pay a great deal of attention to when we mark your assignments.

 Hadley Wickham Style Guide from Advanced R
« Google Style Guide

6 RStudio

In this section, we will have a look at the RStudio IDE. The IDE is where we are going to
spend most of our time when we interact with R. You can think of the IDE as the body of
a car: the seats, the steering wheel, all the luxuries, bells and whistles—essentially, all those
various things that make up the experience of using the vehicle.

R itself, on the other hand, is the engine. So, just as in a real car, if you take the engine
out, all the seats, the bells and whistles, the steering wheel, and all the safety features mean
absolutely nothing without that engine to power it. Similarly, with RStudio, you do need the
R engine to operate RStudio. The IDE alone cannot run your code; it's merely the interface
and the facilitator, but the actual computations require the presence of R.

https://www.rstudio.com/resources/cheatsheets/
https://github.com/rstudio/cheatsheets/blob/main/base-r.pdf
https://github.com/rstudio/cheatsheets/blob/main/base-r.pdf
https://www.tidyverse.org/
http://adv-r.had.co.nz/Style.html
http://adv-r.had.co.nz/
http://adv-r.had.co.nz/
https://google.github.io/styleguide/Rguide.xml

6.1 General Settings

Before we start using RStudio, let’s first set it up properly. Find the “Tools’ (‘Preferences’)
menu item, navigate to ‘Global Options’ (‘Code Editing’) and select the tick boxes as shown

in the figure below.

Options

General

Code

> Console

Appearance
Pane Layout

Packages

6

R Markdown

Python

e 5

) Sweave

ABc

7 Spelling

@ cit/sw
"5, Publishing

. Terminal

0 Accessibility

Graphics Advanced

R Sessions
Default working directory (when not in a project):

/Users/ajsmit/Library/CloudStorage/Goc| Browse...

~ Restore most recently opened project at startup
v Restore previously open source documents at startup
Workspace
Restore .RData into workspace at startup
Save workspace to .RData on exit:
History
v/ Always save history (even when not saving .RData)
v/Remove duplicate entries in history
Other
v/ Wrap around when navigating to previous/next tab
v| Automatically notify me of updates to RStudio

Send automated crash reports to RStudio

OK Cancel

Figure 3: RStudio preferences

6.2 Customising Appearance
RStudio is highly customisable. Under the Appearance tab under “Tools’/‘Global Options’
you can see all of the different themes that come with RStudio. We recommend choosing
a theme with a black background (e.g., Chaos) as this will be easier on your eyes and your

Apply

computer. It is also good to choose a theme with a sufficient amount of contrast between the

different colours used to denote different types of objects/values in your code.

Options

RStudio theme:

plotting of R objects

plot <- function (x, y, ...)

-ﬂ Appearance

Pane Layout

R Markdown

JetBrainsMonoNerdFontCon v

Text rendering:

Editor theme:

Code Zoom: if (is.function(x) &&
is.nullCattr(x, "class")))
> Console) L
Editor font: if (missing(y))

y <= NULL

check for ylab argument
hasylab <- function(...)

lall(is.na(
| Packages Editor font size: pmatch(names(list(...)),
Yab™))

if Chasylab(...))

Ambiance plot. function(x, y, ...)
A Python Chaos
. Chrome else
@ sweave Clouds plot. function(
Clouds Midnight X, Y,
aBo . Cobalt ylab = paste(
7. Spelling Crimson Editor deparse(substitute(x)),
Dawn "M,
l‘ Git/SVN Dracula)
Dreamweaver !
ichi Ecli
"El‘ Publishing FIZ;Z\S/?sion elae Method("plot"
Gob seMethod("plot")
. Terminal Idle Fingers
iPlastic
@ Accessibility | [Katzenmilch
Add...

OK Cancel Apply

Figure 4: Appearance settings

6.3 Configuring Panes

You cannot rearrange panes (see below) in RStudio by dragging them, but you can alter their
position via the Pane Layout tab in the “Tools’/‘Global Options’ (‘RStudio’/‘Preferences’ —
for Mac). You may arrange the panes as you would prefer; however, we recommend that
during the duration of this workshop you leave them in the default layout.

Options

General
Code
> Console
-ﬂ Appearance
Pane Layout
Packages
@ R Markdown
A Python
@5 sweave

aBC

7 Spelling

W Git/sw

"Ef Publishing

. Terminal

@ Accessibility

6.4 The R Project

A very nifty way of managing your workflow in RStudio is through the built-in functionality
of the R project. We do not need to install any packages or change any settings to use
these. Creating a new project is a very simple task, as well. This will prevent a lot of issues
by ensuring we are doing things by the same standard. Better yet, an R project integrates
seamlessly into version control software (e.g., GitHub) and allows for instant world class
collaboration on any research project. We will cover the concepts and benefits of an R project

Choose the layout of the panels in RStudio by selecting from the controls
in each panel. Add up to three additional Source Columns to the left side
of the layout. When a column is removed, all saved files within the column
are closed and any unsaved files are moved to the main Source Pane.

@ Add Column
(e
‘ Source V‘ ‘ Console v
AN
Envi 1t, History, Cc ions, || | [Files, Plots, Packages, Help, Viewe v
v Environment Environment
| History History
Files | Files
Plots | Plots
| Connections Connections
Packages v Packages
Help v Help
| Build Build
|_[v]vCs —Jvcs
OK Cancel Apply

more as we move through the course.

1.
2.

Your RStudio should now look something like this (with the name BDC334_project

Figure 5: Rearranging the panes

In the RStudio menu, find ‘File’ and then ‘New Project.
Select ‘New Directory” and then ‘New Project.

Name the project ‘BCB334_project’ and save it in a location of your choice (make sure
you understand your computer’s file system and where you are saving files).

Click ‘Create Project.
All data files for this course are available in the main data folder. You can access
individual files as needed throughout the course.

displayed in the top right-hand corner of your RStudio window):

../data/

© -0y - Ga to file/function

Console Terminal Background Jobs

R - R4.4.2 - ~/Documents/R_local Intro_R_Workshop/

R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarché4-apple-darwin2@

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
*citation()" on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()’ for on-line help, or
*help.start()' for an HTHL browser interface to help.
Type 'g()' to quit R.

Successfully loaded .Rprofile on Mon Feb 3 07:23:59 2025
>

Figure 6: RStudio project

Note the key points:

p - RStudio @
@ & mntro R Workshop ~
Environment History Connections Tutorial —=

[“~ImportDataset ~ % 163MiE - & List +
R - (7 Global Environment -

Environment is empty

Files Plots Packages Help Viewer Presentation
@ Folder © File - @ Delete - Rename ¢ -
£ Home > Documents > R_local - Intra_R_Workshop
A Name Size Modified
t .
2 Intro_R_Workshop.Rproi €) 3068 Feb 3, 2025, 7:23 AM

data @

« @ The project name is displayed in the top right corner of the RStudio window.

« @ The name of the project workspace file is displayed in the Files pane.

« © The name of the data folder is displayed in the Files pane.

« O The project name is displayed in the title bar of the RStudio window (corresponding to

the physical location on your computer).

1 Copying Code from RStudio

Here you saw RStudio execute the R code needed to install (using install.packages())
and load (using library()) the package, so if you want to include these in one of your
programs, just copy the text it executes. Note that you need only install the current
version of a package once, but it needs to be loaded at the beginning of each R session.

6.5 The Panes of RStudio

RStudio has four main panes, each occupying a quadrant of your screen: Source Editor,
Console, Workspace Browser (and History), and Plots (and Files, Packages, Help). These
can also be adjusted under the ‘Preferences’ menu. Note that there might be subtle differ-
ences between RStudio installations on different operating systems. We will discuss each of
the panes in turn.

6.5.1 Source (Script) Editor
Generally we will want to write programs longer than a few lines. The Source Editor can
help you open, edit and execute these programs. Let us open a simple program:

1. Use Windows Explorer (Finder on Mac) and navigate to the file BONUS/the new_age.R.

2. Now make RStudio the default application to open .R files (right click on the file Name
and set RStudio to open it as the default if it isn’t already)

3. Now double click on the file - this will open it in RStudio in the Source Editor in the top
left pane.

Note .R files are simply standard text files and can be created in any text editor and saved
with a .R (or . r) extension, but the Source editor in RStudio has the advantage of providing
syntax highlighting, code completion, and smart indentation. You can see the different
colours for numbers and there is also highlighting to help you count brackets (click your
cursor next to a bracket and push the right arrow and you will see its partner bracket
highlighted). We can execute R code directly from the Source Editor. Try the following (on
Macs replace Ctrl with Cmd):

« Execute a single line (Run icon or Ctrl+Enter). Note that the cursor can be anywhere on
the line and one does not need to highlight anything — do this for the code on line 2

« Execute multiple lines (Highlight lines with the cursor, then Run icon or Ctrl+Enter) —
do this for line 3 to 6

 Execute the whole script (Source icon or Ctrl+Shift+Enter)

Now, try changing the x and/or y axis labels on line 18 and re-run the script.

Now let us save the program in the Source Editor by clicking on the file symbol (note that
the file symbol is greyed out when the file has not been changed since it was last saved).

At this point, it might be worth thinking a bit about what the program is doing. R requires
one to think about what you are doing, not simply clicking buttons like in some other
software systems which shall remain nameless for now. Scripts execute sequentially from
top to bottom. Try and work out what each line of the program is doing and discuss it with
your neighbour. Note, if you get stuck, try using R’s help system; accessing the help system
is especially easy within RStudio — see if you can figure out how to use that too.

11

1 The # symbol

The hash (#) tells R not to run any of the text on that line to the right of the symbol.
This is the standard way of commenting R code; it is VERY good practice to comment
in detail so that you can understand later what you have done.

6.5.2 Console
This is where you can type code that executes immediately.

The R console is an integral part of RStudio. In fact, the console is the main component of
the software that is visible within R, the programme. In other words, when we use R outside
of its integrated development, the console is essentially what we interact with.

Although we can run our entire analysis within the console, we seldom do so. For that
purpose, we use the Source Editor because our analysis is often comprised of many tens,
hundreds, or even thousands of lines of executable code. Typically, in our day-to-day inter-
action with the R console, we use it to execute small programmes, each of which is usually
no longer than about one line at a time. Alternatively, we might use the console to quickly
and interactively check various objects stored within the R environment, or to perform small
calculations on the fly, and so forth.

Thus, the console is typically reserved for one-off calculations—tasks that we do not need
to retain for our future analysis at a later stage.

We will return to the Console later in Section 7 when we start practicing running code.

6.5.3 Environment and History Panes

The Environment pane is very useful as it shows you what objects (i.e., dataframes, arrays,
values and functions) you have in your environment (workspace). You can see the values
for objects with a single value and for those that are longer R will tell you their class. When
you have data in your environment that have two dimensions (rows and columns) you may
click on them and they will appear in the Source Editor pane like a spreadsheet.

You can then go back to your program in the Source Editor by clicking its tab or closing the
tab for the object you opened. Also in the Environment is the History tab, where you can
see all of the code executed for the session. If you double-click a line or highlight a block of
lines and then double-click those, you can send it to the Console (i.e., run them).

Typing the following into the Console will list everything you've loaded into the Environ-
ment:

Ls()

12

character(0)

What do we have loaded into our environment? Did all of these objects come from one
script, or more than one? How can we tell where an object was generated?

6.5.4 Files, Plots, Packages, Help, and Viewer Panes

The last pane has a number of different tabs. The Files tab has a navigable file manager,
just like the file system on your operating system. The Help tab is particularly important as
it allows you to search the R documentation for help and is where the help appears when
you ask for it from the Console. Methods of getting help from the Console include will be
discussed later in Section 9. The Packages tab shows you the packages that are installed and
those that can be installed (see Section 11).

The Plot tab is where our figures will typically appear. Here’s a quick taste of what is to come—
it shows already some of the things I mentioned above, including the use of the Console,
loading packages, and so on. To reproduce Figure Figure 7 in the Plot tab, simply copy and
paste the following code into the Console:

X <- seq(0, 2, by = 0.05)
y <- 2 * sin(2 * pi * (x - 1/4))
plot(x, y, col = "red")

N 090 090
o o o o
_| o o o o
—
o o o o
> o - o o o o
o o o o
E———
' o o o o
(o) o o o
N O e®) Op
| I I I |
0.0 0.5 1.0 1.5 2.0

Figure 7: A plot assembled with the base R plot fuction.

13

7 Basic Calculations

1 Type it in!

Although it may appear that one could copy code from this PDF into the Console,
you really shouldn’t. The first reason is that you might unwittingly copy invisible PDF
formatting codes into R, which will make your script fail. But more importantly, typing
code into the Console yourself gives you the practice you need, and allows you to make
(and correct) your errors. This is an invaluable way of learning and taking shortcuts now
will only hurt you in the long run.

To get started, we'll use R like a simple calculator. You can type the command directly into the
R Console and press Enter, and it will execute and display the result. Alternatively, you may
type the command in the Source Editor. Making sure that your cursor is anywhere on the
line that you want to execute, press Control + Enter if you are on a Windows computer, or
Command + Enter if you are using a Macintosh. In both cases, the command you have typed
in the Source Editor will be executed in the Console, and the output will be displayed there.

Addition, Subtraction, Multiplication, and Division

In the R Console, start your calculation at the command prompt, >, like this:
>3 + 2

Basic arithmetic is easy:

Math R Result
3+2 3+2 5
3—2 3 -2 1
3-2 3*2 6
3/2 3/2 15

Note that each line of the output for every calculation (e.g., 3 + 2) is indicated by [...], as
we see here:

3+ 2

[1] 5

Above, the [1] indicates that the answer is a vector of one element.

14

Similarly, the commands for various basic mathematical operations are in the following
tables:

Exponents

Math R Result
32 372 9
2(=3) 2~ (-3) 0.125
100/2 100 ~ (1 / 2) 10
V100 sqrt(100) 10

Mathematical Constants

Math R Result

T pi 3.1415927

e exp(1l) 2.7182818
Logarithms

Note that we will use In and log interchangeably to mean the natural logarithm. There is no
In() in R, instead it uses log() to mean the natural logarithm.

Math R Result
log(e) Log(exp(1)) 1
log;,(1000) 1log16(10060) 3
log,(8) log2(8) 3

log,(16) log(16, base = 4) 2

Trigonometry

Math R Result
sin(w/2) sin(pi / 2) 1
cos(0) cos(0) 1

7.1 The Assignment Operator

We can also use the assignment operator <- to assign any calculation to a variable so we can
access it later (the = sign would work, too, but it’s bad practice to use it... and we'll talk about
this as we go):

15

a <- 2
b <- 7
a+b

[1] 9

To type the assignment operator (<-) press the following two keys together: alt -. There
are many keyboard shortcuts in R and we will introduce them as we go along.

Spaces are also optional around assignment operators. It is good practice to use single spaces
in your R scripts, and the alt - shortcut will do this for you automagically. Spaces are
not only there to make the code more readable to the human eye, but also to the machine.
Try this:

d<-2
d < -2
[1] FALSE

Note that the first line of code assigns d a value of 2, whereas the second statement asks
R whether this variable has a value less than 2. When asked, it responds with FALSE. If we
hadn’t used spaces, how would R have known what we meant?

Another important question here is, is R case sensitive? Is A the same as a? Figure out a way
to check for yourself.

1 Self Assessment 1

What are the values after each hashed statement in the following? Use the RStudio
Console to determine these values:

mass <- 48

age <- 78

mass <- mass * 2.0 # mass?

age <- age - 17 # age? m

mass_index <- mass / age # mass index?

16

1 Self Assessment 2

Use R to calculate some simple mathematical expressions. Assign the value of 40 to x
and assign the value of 23 to y. Make z the value of x - y. Display z in the console.

7.2 More About the Console
RStudio supports the automatic completion of code using the Tab key. For example, type
the three letters mas and then the Tab key. What happens?

The code completion feature also provides brief in-line help for functions whenever possible.
For example, type mean () and press the Tab key.

The RStudio Console automagically maintains a ‘history’ so that you can retrieve previous
commands, a bit like your Internet browser or Google. On a blank line in the Console, press
the up arrow, and see what happens.

If you wish to review a list of your recent commands and then select a command from this
list you can use Ctrl + Up to review the list (Cmd + Up on the Mac). If you prefer a ‘bird’s
eye overview of the R command history, you may also use the RStudio History pane.

The Console title bar has a few useful features:

1. It displays the current R working directory (more on this later)

2. It provides the ability to interrupt R during a long computation (a stop sign will appear
whilst code is running)

3. It allows you to minimise and maximise the Console in relation to the Source Editor
using the buttons at the top-right or by double-clicking the title bar)

8 Built-in R Functions
Above we have seen a few basic math functions, such as sqrt (), log(),and sin(). There are
many (1000s) others, including commonly-used ones like mean(), sd(), cor(), and so on.

A conventional R function obeys a consistent anatomy. You invoke it by name, supply argu-
ments (some with defaults), and receive a return answer (anything fromm a vector of length
1 or a complex summary of a model fit). Under the hood, the formal definition comprises a
usage line (its signature or name), a set of arguments (with default values), and, where visible,
a body (the code that executes). Let’s unpack this with two ubiquitous functions: mean()

and cor().

The function’s name is always immediately followed by a set of matching brackets inside of
which are the arguments. For example:

e mean(x, trim = 0, na.rm = FALSE, ...)

17

e cor(x, y = NULL, use = "everything", method = c("pearson", "kendall",
"spearman"))

If you know the name of a function but not its arguments, you can apply the args () function
to a function’s name:

args(mean)

function (x, ...)

NULL

args(cor)

function (x, y = NULL, use = "everything", method = c("pearson",
"kendall", "spearman"))

NULL

The first argument in both, x, is not followed by a = that assigns some value to it. In such
cases that argument has no default value and the user must supply something. Here, x would
be a vector in the case of mean(x, ...) or a vector, matrix, or dataframe in the case of
cor(x, ...).Torun the functions, the user must supply that input, but as far as the other
arguments are concerned, the function should run fine with the default values (but you need
to double check that they are appropriate). Sometimes we will also see ... inside of the
function call, which means that other arguments may be provided to satisfy some deeper
need of internal functions and so on.

That’s nice, but how do I know what the arguments do, and, if I encounter a new function
that I don’t know, how do I learn more about it? Use R’s very powerful help system.

9 Getting Help
9.1 R’s Help System

In using R as a calculator, we have seen a number of functions: sqrt (), exp(), log() and
sin(). To get documentation about a function in R, simply put a question mark in front of
the function name and RStudio will display the documentation, for example:

?1log
?sin
?mean
7cor

18

This summons a help page in the RStudio Help tab divided into sections:

Description - a brief sketch of the function’s purpose;
Usage - the arguments you saw via args ();

Arguments - each argument spelled out, its type, and role;
Details - algorithmic notes or warnings;

Value - what the function returns;

Examples - runnable code illustrating common patterns.

If you prefer to search by keyword (“correlation” or “standard deviation”), use:

help.search("correlation")

or
??"standard deviation"

Finally, to run the examples embedded in a help file:

example(cor)
not executed as the output is volumnous

9.2 What if the R Help System is Not Enough?

Frequently one of the most difficult things to do when learning R is asking for help. First,
you need to decide to ask for help, then you need to know how to ask for help. Your very

first line of defense should be to Google your error message or a short description of your

issue. (The ability to solve problems using this method is quickly becoming an extremely

valuable skill.) If that fails, and it eventually will, you should ask for help. There are a number

of things you should include when emailing an instructor, or posting to a help website such
as Stack Exchange.

Describe what you expect the code to do.

State the end goal you are trying to achieve. (Sometimes what you expect the code to do,
is not what you want to actually do.)

Provide the full text of any errors you have received.

Provide enough code to recreate the error. Often for the purpose of this course, you could
simply email your entire .R, .Rmd, .qmd file.

Sometimes it is also helpful to include a screenshot of your entire RStudio window when
the error occurs.

If you follow these steps, you will get your issue resolved much quicker, and possibly learn

more in the process. Do not be discouraged by running into errors and difficulties when

learning R. (Or any technical skill.) It is simply part of the learning process.

19

http://stats.stackexchange.com/

10 Introducing Scripts

Below you’ll find a concise guide to writing your first R scripts. Each section combines
exposition, runnable code snippets and brief exercises so you can test your understanding
as you go.

Remember the difference between scripts (in the Source Editor) and the ad-hoc functions
run in the Console... When you open RStudio (or another editor), you see two ways to work:

1. Console: You type commands interactively. Results appear immediately. Useful for ad-
hoc calculations.

2. Script: A text file (often with .R extension, but .rmd and .qgmd are also very common)
where you assemble commands in order. You run chunks or the entire file. Scripts keep
analyses reproducible.

In the Source Editor, begin a new script file. Save it as first_script.R within your
Rproject. From now on, write code there, then press “Run” (or Ctrl + Enter) to execute.
(Of course you can do all of this in the Console too, but that would be silly as you'll typically
not be able to retrieve any of the work done as you work on complex calculations.)

In our new script, we will explore the properties of four common ways to handle data within
R: vectors, matrices, arrays, and dataframes.

10.1 Vectors: One-Dimensional Data
A vector holds elements of a single type:

Body lengths (mm) measured on three frogs
lengths <- c(34.5, 29.8, 31.2)
class(lengths) # "numeric"

[1] "numeric"

Here c() “combines” values into a vector. The name lengths now refers to that object in
memory.

We can aply arithmetic to the vectors, or, for more complex statistical calculations, we can
apply some built-in statistical functions:

lengths * 0.001 # convert mm to meters

[1] 0.0345 0.0298 0.0312

20

mean (lengths) # average length

[1] 31.83333

sd(lengths) # standard deviation

[1] 2.413158

Since lengths is numeric, those operations apply to each element (vectorisation in action).
No loop needed.

1 Self Assessment 3

In your script, create a numeric vector masses with values 1.2, 0.9, 1.5 (grams).
Compute its mean and standard deviation.

10.2 Matrices: Two-Dimensional Tables
Matrices extend vectors by adding rows and columns. Every element shares the same type:

Suppose you measured length (mm) and mass (g) for three frogs
mat <- matrix(c(34.5, 29.8, 31.2, 1.2, 0.9, 1.5),
nrow = 3, byrow = FALSE)
colnames(mat) <- c("Length mm", "Mass g")
rownames (mat) <- paste@("Frog", 1:3)

You'll see:
mat
Length _mm Mass g
Frogl 34.5 1.2
Frog2 29.8 0.9
Frog3 31.2 1.5

To compute column means:

colMeans (mat)

21

Length mm Mass g
31.83333 1.20000

Row sums:

rowSums (mat)

Frogl Frog2 Frog3
35.7 30.7 32.7

The same may be achieved with the apply() function. Here, the argument MARGIN = 1
calculates along the first margin, which in R is always the rows. MARGIN = 2 applies the
function to the columns:

Calculate row means
apply(mat, MARGIN = 1, FUN = mean)

Frogl Frog2 Frog3
17.85 15.35 16.35

Calculate column means
apply(mat, MARGIN = 2, FUN

mean)

Length mm Mass g
31.83333 1.20000

Above, we conveniently calculate the statistics all at once across rows and columns. But we
can be more granular and access specific rows and columns individually. To do this we use

the [] notation.

Access the rows
mat[l,] # extract to first row

Length mm Mass g
34.5 1.2

mean(mat[3,]) # apply the mean function to the third row

22

[1] 16.35

Access the columns
mat[, 2]

Frogl Frog2 Frog3
1.2 0.9 1.5

mean(mat[, 21)

[1] 1.2

1 Self Assessment 4

Using the example with mat above, extract the element in the second row and the second
column. In English, how would you describe the use of the [] notation?

1 Self Assessment 5

Build a 2x4 matrix env with temperature (°C) in column 1-2 and pH in column 3-4,
for two sites. Then compute rowMeans (env).

1 Self Assessment 6

1. In your first_script.R, inspect the structure of two additional built-in functions
—choose from median(), var(), or quantile(). Write down:

The name of each argument.
Its default value (if any).

Note one practical scenario (from the Examples section) where you might apply it in
your field of study.

Note how missing values are handled by default, and which argument controls that
behavior.

2. Write a short code block (in your script) that applies your favourite function to a
numeric vector of your choice, intentionally including at least one NA. Return the
output of the calculation.

23

10.3 Arrays: Higher-Dimensional Data

An array generalises a matrix to three (or more) dimensions:

Create a 2x2x2 array of counts: species x site x time
counts <- array(1:8, dim c(2,2,2),
dimnames list(
Species = c("SpA","SpB"),
Site = c("A","B"),
Time = c("T1","T2")))

counts

, , Time = T1

Site
Species A B
SpA 1 3

SpB 2 4

, , Time = T2
Site
Species A B

SpA 5 7
SpB 6 8

Arrays prove handy when you track multiple variables across both space and time.

1 Self Assessment 7

Define a 3x3x2 array representing chlorophyll (ug L) at three depths and three
stations across two months. Use any numeric values. Use dimnames () to label dimen-
sions.

1 Self Assessment 8

How does the [] notation work with arrays? Demonstrate your understanding on your
array with chlorophyll data.

10.4 Data Frames: Tabular, Mixed-Type Data

A data frame is like a spreadsheet: each column can be a different type:

24

obs <- data.frame(
SamplelD = 1:4,
Species = c("Ant","Bee","Fly", "Wasp"),
Wings = c(2, 2, 2, 2),
Mass mg = c(2.3, 1.8, 0.5, 2.0),

stringsAsFactors = FALSE
)
str(obs)
'data.frame': 4 obs. of 4 variables:

$ SampleID: int 12 3 4

$ Species : chr "Ant" "Bee" "Fly" "Wasp"
$ Wings :num 2 2 2 2

$ Mass mg : num 2.3 1.8 0.5 2

You can extract the Mass mg vector:

mean (obs$Mass mg)

[1] 1.65
Or select rows by condition:

obs[obs$Mass mg > 1,]

SampleID Species Wings Mass mg
1 1 Ant 2 2.3
2 2 Bee 2 1.8
4 4 Wasp 2 2.0
1 Self Assessment 9

Construct a data frame plants with columns Plot (A, B, C), SpeciesRichness (integer),
and Biomass_g. Compute the overall mean biomass.

10.5 Principles of Vectorisation
Rather than looping over each element, you apply functions to entire vectors:

25

X <- 1:10
sqrt(x) # returns vector of square roots

[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751
2.828427
[9] 3.000000 3.162278

log(x + 1) # adds 1 to each element, then takes log

[1] ©.6931472 1.0986123 1.3862944 1.6094379 1.7917595 1.9459101
2.0794415
[8] 2.1972246 2.3025851 2.3978953

Underneath, R’s internals run optimised C code. You write less and your script runs faster.

Contrast with an explicit loop:

out <- numeric(length(x))

for(i in seq along(x)) {
out[i] <- sqgrt(x[il)

}

Vectorised code tends to be clearer—and, often, shorter.
10.6 Organising Your Script

10.6.1 Header comments
Indicate purpose, date, author:

first script.R
A simple demonstration of base R constructs
AJ, 2025-07-27

10.6.2 Logical blocks
Use blank lines or commented titles:

--- Vectors and summary stats ---

You may use Ctrl + Shift + R (Cmd + Shift + R on a Mac) to create a dialogue box where
you may type your section headings.

26

10.6.3 Save results
Write outputs to disk when needed:

write.csv(obs, "observations.csv", row.names = FALSE)

Later, you'll learn how to read such files back (read.csv()).

1 Further Practice

1. Simulate 50 random normal body temperatures (mean = 37, sd = 0.5) and compute
their summary statistics.

2. Create a matrix of two traits for five individuals; then extract the submatrix for
individuals 2-4.

3. Build a data frame of bird counts per site and date; then find the date with highest
total count.

Play around with the script. If you execute each block in your script and tweak the para-
meters, you'll become more familiar with writing and organising code, and eventually it
will become second nature. When you are comfortable, we'll introduce file input/output
and slightly more advanced data manipulation.

11 Installing Packages

The most common functions used in R are contained within the base package; this makes
R useful ‘out of the box. However, there is extensive additional functionality that is being
expanded all the time through the use of packages. Packages are simply collections of code
called functions that automate complex mathematical or statistical tasks. One of the most
useful features of R is that users are continuously developing new packages and making them
available for free. You can find a comprehensive list of available packages on the CRAN
website. There are currently (2026-01-11) 23020 packages available for R!

If the thought of searching for and finding R packages is daunting, a good place to start is
the R Task Views page. This page curates collections of packages for general tasks you might
encounter, such as Experimental Design, Meta-Analysis, or Multivariate Analysis. Go and
have a look for yourself, you might be surprised to find a good explanation of what you need.

Let’s install our first package. After clicking “Tools’/‘Install Packages, type in the package
name tidyverse in the ‘Packages’ text box (note that it is case sensitive) and select the ‘Install’
button. The Console will run the code needed to install the package, and then provide some
commentary on the installation of the package and any of its dependencies (i.e., other R
packages needed to run the required package).

27

https://cran.r-project.org/web/packages/
https://cran.r-project.org/web/packages/
http://cran.r-project.org/web/views/
http://cran.r-project.org/web/views/

The installation process makes sure that the functions within the packages contained within
the tidyverse are now available on your computer, but to avoid potential conflicts in the
names of functions, it will not load these automatically. To make R ‘know’ about these func-
tions in a particular session, you need either to load the package via ticking the checkbox
for that package in the Packages tab, or execute:

library(tidyverse)

To prepare ourselves for the week ahead, let us also install the following packages. Here
I demonstate the command line approach to achieve the same thing that can be done via
the menu:

install.packages(rmarkdown)
install.packages(tidyverse)

Since we will develop the habit of doing all of our analyses from R scripts, it is best practice
to simply list all of the libraries to be loaded right at the start of your script. Comments may
be used to remind your future-self (to quote Hadley Wickham) what those packages are for.

Once you close R, all the packages are closed and put back on the imaginary shelf. The next
time you open R, you do not have to install the package again, but you do have to load any
packages you intend to use by invoking library().

12 Introduction to R Markdown in Quarto

12.1 What is Markdown?

Markdown is a lightweight markup language that is designed for formatting text in a simple
and readable way. It allows you to create formatted documents using a plain text editor, using
symbols like # for headings, * or - for bullet lists, and other intuitive shortcuts. This makes it
much easier to write well-structured documents compared to traditional word processors,
especially for scientific and academic writing.

12.2 R Markdown: Integrating Code and Text

R Markdown is an extension of Markdown that allows you to embed code—such as R,
Python, or Julia—directly into your text. This means you can integrate both your narrative
(your explanations, interpretation, and discussion) and your code (data analysis, statistics,
plots) into a single document. When this document is rendered, both the text and the
outputs of your code (including tables and figures) are combined together into a final report.

R Markdown is very useful in all areas of research because it allows you to:

o Prepare transparent, reproducible reports

28

« Embed statistically rigorous analyses directly alongside your commentary
 Seamlessly incorporate tables and graphics generated by R

Write entre books

Even this website, Tangled Bank, was written entirely in R Markdown (in Quarto-see
below)

12.3 Using R Markdown in Quarto

Quarto is a modern open-source scientific and technical publishing system. It is essentially
the successor to the older R Markdown system, and supports a range of programming
languages in addition to R.

12.3.1 Important Features

« Write content in a human-readable format using Markdown

o Include code chunks using triple backticks, specifying the language—e.g. ** * {r} at the
startand " at the end of the chunk for R

« Supports citations and bibliographies

 Automatically generates formatted outputs such as PDF, HTML, and Word

12.3.2 Document Structure
A basic R Markdown (as implemented in Quarto) document has three main elements:

1. YAML Header: At the very top, enclosed by three dashes - - -, specifying basic document
metadata (such as title, author, output format)

2. Narrative Text: Written in Markdown, supporting headings, lists, emphasis, tables, and
more

3. Code Chunks: Segments of code embedded in the narrative and enclosed using triple
backticks with curly braces indicating the language

12.3.3 Example Skeleton

title: "R Markdown and Quarto Demo"
author: "AJ Smit"
date: "29/07/2025"
bibliography: ../references.bib
citation: true
format:
html:
code-fold: false
embed-resources: true
number-depth: 3
number-sections: true
docx: default

29

Introduction

This study is about air quality.
Methods

Data

The dataset used in this study is the airquality dataset from R,
which contains daily

air quality measurements in New York from May to September 1973. The
dataset includes

variables such as ozone levels, solar radiation, wind speed, and
temperature.

Analysis

The R script in the code chunk further explores the impact of
temperature on ozone level.
All analyses were done in R [@R2025].

This is **bold** text. This is *italicised* text.

S
#| label: fig-airquality

#| fig-width: 6

#| fig-height: 4

#| fig-cap-location: bottom

#| fig-cap: "Temperature and ozone level."
#| warning: false

library(ggplot2)
ggplot(airquality, aes(Temp, Ozone)) +

geom point() +
geom smooth(method = "loess")

N

Results

The results show that air has quality (@fig-airquality).

30

In the Example Skeleton, Lines 1-15 are called the YAML header, which contains metadata
about the document. Initially, you'll not want to include the YAMLlines bibliography: ../
references.biband citation: true since you will not have a bibliography file set up yet.
The citation: true option is used to enable citations in the document, and you may read
more about it elsewhere. A very important part of the YAML header is the statement embed -
resources: true which ensures that any images or other resources such as the theming
styles etc. used in the document are embedded directly into the HTML output, making it
self-contained and portable - this is essential when you want to share your document with
others, publish it online, or submit it for grading.

Lines 17-34 in the YAML header are the first two sections (two level one headings, “Intro-
duction” and “Methods”, the latter with two level three headings beneath is, i.e., “Data” and
“Analysis”) of the document. Lines 36-49 are the code chunk, which is where we embed
our R code. The #| fig-cap option in the code chunk specifies the caption for the figure
that will be generated, and you can cross reference this using @fig-airquality in your
next block of body text. The code chunk itself generates a figure that shows the relationship
between temperature and ozone level in the airquality dataset. Notice also how I have
cited a reference, @R2025, which is a reference to the R software itself, which is specified in
the bibliography file references.bib (which you will need to create in your own time).

When you render this file, you’ll see the following output (the HTML output shown):

31

On this page

R Markdown and Quarto Demo BCode b
AUTHOR PUBLISHED 2 Methods
AJ Smit May 7, 2027 3 Results

o © Edit this page
1 Introduction Reportan oo
This study is about air quality. c[:]":;f;:::ts

PDF

2 Methods
2.1 Data

The dataset used in this study is the airquality dataset from R, which contains daily air quality measurements in New York
from May to September 1973. The dataset includes variables such as ozone levels, solar radiation, wind speed, and
temperature.

2.2 Analysis

The R script in the code chunk further explores the impact of temperature on ozone level. All analyses were done in R (R Core
Team 2025).

This is bold text. This is italicised text.
library(ggplot2)]
ggplot(airquality, aes(Temp, Ozone)) +

geom_point() +
geom_smooth(method = "loess")

oI W N =

Figure 1: Temperature and ozone level.

3 Results

The results show that air has quality (Figure 1).

References

R Core Team (2025) R: A language and environment for statistical computing 7. R Foundation for Statistical Computing, Vienna, Austria

Figure 8: The HTML output of the above Quarto document.

12.3.4 Supported Output Formats
By changing the format option in the YAML header, you can export your report to different
types including:

« PDF documents (provided you have LaTeX installed)

32

o HTML web pages
o Word (.docx) documents

For example:
format: pdf
or

format: docx

12.3.5 Rendering the Document

 In RStudio or VS Code, you can click the ‘Render’ or ‘Knit’ button to produce your
desired output.

» You can also use the command line: $ quarto render my file.gmd$

12.4 More Detailed information

Please refer to the Markdown Basics page on the Quarto website for much more information
about markdown.

Quarto is extremely powerful and you’ll want to explore the Markdown Basics page thor-
oughly in your own time. Of immediate interest to most of you will be the page on Citations,
or the other information under “Scholarly Writing” that you may access in the menu on the
left of the page.

You will also have to explore the various YAML options, YAML meaning ‘Yet Another
Markup Language. You can specify these at the beginning of your document in the YAML
block at the top, which allows you to define various options for how your HTML, Word
document, PDF, or any of the many formats that Quarto can produce, will look. Please
consult the reference section on the Quarto website for the various YAML options available
(e.g., here the HTML YAML options), so that you can set up your document in the way you
would like it to appear.

One thing to note about YAML is that it is incredibly particular about the way in which the
various levels of indentation must appear in order for the YAML to be read correctly by your
Quarto system and for the code to execute correctly. So, this is an excellent opportunity for
you to pay attention to detail and ensure that your YAML is precisely structured according
to the expectations of the example document provided.

12.5 Why Use R Markdown?

« Ensures your analyses are reproducible
o Allows collaboration between researchers

33

https://quarto.org/docs/authoring/markdown-basics.html
https://quarto.org/
https://quarto.org/docs/authoring/citations.html
https://quarto.org/docs/reference/formats/html.html

« Combines field notes, data analysis, results, and interpretation in one place

13 The End

So, this was just a very brief introduction to R. There is obviously a lot more to learn, but the
introduction provided here should be sufficient to get you started and to make next week’s
practical, Lab 2b, a great deal easier for you. You will need to spend some time learning R
independently. As I mentioned during the lectures, R has become an indispensable part of
research, especially in biology, since most of the statistical analyses that you will need to
perform will be done within R.

The key message I want to leave you with is that many of the things that you can know and
that you can learn do not necessarily have to be taught to you. You are more than capable of
acquiring the knowledge you need by yourself.

If you want something, work for it.

Bibliography

34

	Introduction to R
	Getting Started
	Why R?
	What You'll Find Here

	Learning R
	A Few Words on Style
	RStudio
	General Settings
	Customising Appearance
	Configuring Panes
	The R Project
	The Panes of RStudio
	Source (Script) Editor
	Console
	Environment and History Panes
	Files, Plots, Packages, Help, and Viewer Panes

	Basic Calculations
	Addition, Subtraction, Multiplication, and Division
	Exponents
	Mathematical Constants
	Logarithms
	Trigonometry
	The Assignment Operator
	More About the Console

	Built-in R Functions
	Getting Help
	R's Help System
	What if the R Help System is Not Enough?

	Introducing Scripts
	Vectors: One-Dimensional Data
	Matrices: Two-Dimensional Tables
	Arrays: Higher-Dimensional Data
	Data Frames: Tabular, Mixed-Type Data
	Principles of Vectorisation
	Organising Your Script
	Header comments
	Logical blocks
	Save results

	Installing Packages
	Introduction to R Markdown in Quarto
	What is Markdown?
	R Markdown: Integrating Code and Text
	Using R Markdown in Quarto
	Important Features
	Document Structure
	Example Skeleton
	Supported Output Formats
	Rendering the Document

	More Detailed information
	Why Use R Markdown?

	The End
	Bibliography

