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 BCB743

This material must be reviewed by BCB743 students in Week 1 of Quantitative
Ecology.

 This Lab Accompanies the Following Lecture

• Lecture 4: Biodiversity Concepts
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 Data For This Lab

The seaweed (Smit et al. 2017) and toy data are at the links below:

• The seaweed species data – SeaweedSpp.csv
• The seaweed environmental data – SeaweedEnv.csv
• The seaweed coastal sections – SeaweedSites.csv
• The fictitious light data light_levels.csv

Biodiversity The variability among living organisms from all sources including, inter alia,
terrestrial, marine and other aquatic ecosystems and the ecological complexes of which
they are part; this includes diversity within species, between species and of ecosystems.

— International Union for the Conservation of Nature (IUCN), Convention on Bio-
logical Diversity

The IUCN definition considers a diversity of diversity concepts. This module looks at
diversity only at the species level (species diversity). However, we can also approach macro-
ecological problems from phylogenetic and functional (and other) diversity concepts of
view. Functional and phylogenetic diversity ideas will be introduced in the BDC743 module
Quantitative Ecology.

1 Preparation
1.1 The South African Seaweed Data
In these examples, we will use the seaweed data of Smit et al. (2017). Please make sure that
you read this paper. An additional file describing the background to the data is available
here (Figure 1).
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Figure 1:  The coastal sections and associated seawater temperature profile associated with
the study by Smit et al. (2017).

One of the datasets, 𝑌  (in the file SeaweedSpp.csv), comprises updated distribution records
of 847 macroalgal species within each of 58 × 50 km-long sections of the South African
coast (Bolton and Stegenga 2002). The dataset captures ca. 90% of the known seaweed
flora of South Africa, but excludes some very small and/or very rare species for which data
are insufficient. The data are from verifiable literature sources and John Bolton and Rob
Anderson’s collections, assembled from information collected by teams of phycologists over
three decades (Bolton 1986, Stegenga et al. 1997, Bolton and Stegenga 2002, De Clerck et
al. 2005). Another file, 𝐸 (in env.csv), is a dataset of in situ coastal seawater temperatures
derived from daily measurements over 40 years (Smit et al. 2013).

1.2 Setting Up the Analysis Environment
We will use R, so first, we must find, install and load various packages. Some packages will
be available on CRAN and can be accessed and installed the usual way, but you will need to
download others from R Forge.
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library(tidyverse)
library(vegan)
library(betapart)

1.3 A Look at the Data
Let’s load the data and see how it is structured:

spp <- read.csv(here::here("data", "seaweed", "SeaweedSpp.csv"))
spp <- dplyr::select(spp, -1)

# Lets look at the data:
dim(spp)

[1]  58 847

We see that our dataset has 58 rows and 847 columns. What is in the columns and rows?
Start with the first five rows and five columns:

spp[1:5, 1:5]

  ACECAL ACEMOE ACRVIR AROSP1 ANAWRI
1      0      0      0      0      0
2      0      0      0      0      0
3      0      0      0      0      0
4      0      0      0      0      0
5      0      0      0      0      0

Now the last five rows and five columns:

spp[(nrow(spp) - 5):nrow(spp), (ncol(spp) - 5):ncol(spp)]

   WOMKWA WOMPAC WRAARG WRAPUR WURMIN ZONSEM
53      0      0      1      0      0      0
54      0      0      1      0      0      0
55      0      0      1      0      0      0
56      0      1      1      0      1      0
57      1      0      1      0      1      0
58      0      0      1      0      1      0
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So, each row corresponds to a site (i.e.  each of the coastal sections), and each column
contains a species. We arrange the species alphabetically and use a six-letter code to identify
them.

2 Species Data
When ecologists talk about species diversity, they typically consider the characteristics of
biological communities in a specific habitat, ecological community, or ecosystem. Species
diversity considers three essential concepts about how species are distributed in space: their
richness, abundance, and evenness. We can express each of these as biodiversity metrics
that allow us to compare communities in space and time.

When ecologists talk about ‘biodiversity’, they might not necessarily be interested in all the
plants and animals and things that are neither plant nor animal that occur at a particular
place. Some ecologists are interested in ants and moths. Others might find fish more
insightful. Some even like marine mammals! I prefer seaweed. The analysis of biodiversity
data might often be constrained to some higher-level taxon, such as all angiosperms in a
landscape, reptiles, etc. (but we sample all species in the higher-level taxon). Some ecological
questions benefit from comparisons of diversity assessments among selected taxa (avifauna
vs small mammals, for example), as this focus might address some particular ecological
hypothesis. The bird vs small mammal comparison might reveal how barriers such as
streams and rivers structure biodiversity patterns. In our examples, we will use such focused
datasets.

Here we look at the various measures of biodiversity, viz. 𝛼-, 𝛾- and 𝛽-diversity. David
Zelený, in his Analysis of community data in R, provides deeper analysis and compulsory
reading.

3 Three Measures of Biodiversity: 𝛼-, 𝛾-, 𝛽-Diversity
Whittaker (1972) coined three measures of biodiversity, and the concepts were ‘modernised’
by Jurasinski et al. (2009). The concepts represent the measurement of biodiversity across
different spatial scales. 𝛼- and 𝛾-diversity express the total number of species in an area.
The first, 𝛼-diversity, represents the number of species at the small (local) scale, such as, for
example, within a sampling unit like a quadrat, transect, plot, or trawl. Alternatively, maybe
the research question represents the local scale by several sampling units nesting within a
small patch of landscape and defines the mean species richness within this patch as local.
Multiples (sampling units or patches) are nested within a larger region (or ecosystem) and
serve as replicates. The complete number of species across all of these replicates indicates
the diversity at a larger scale—this is called 𝛾-diversity. 𝛽-diversity refers to the change in
species composition among samples (sites).
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By now, you will have received a brief Introduction to R, and we can proceed with looking
at some of the measures of biodiversity. We will start by using data on the seaweeds of South
Africa to demonstrate some ideas around diversity measures. The vegan¹ (for vegetation
analysis) package (Oksanen et al. 2022) offers various functions to calculate diversity indices.
I will demonstrate some of these functions below.

3.1 Alpha-Diversity
We can represent 𝛼-diversity in three ways:

1. as species richness, 𝑆;
2. as a univariate diversity index, such as the 𝛼 parameter of Fisher’s log-series, Shannon

diversity, 𝐻′, Simpson’s diversity, 𝜆; or
3. Species evenness, e.g. Pielou’s evenness, 𝐽 .

We will work through each in turn.

3.1.1 Species Richness, 𝑆
First, is species richness, which we denote by the symbol 𝑆. This is the simplest measure of
𝛼-diversity, counting the number of species (or another taxonomic level) present in a given
community or sample. It doesn’t consider the abundance of species.

In the seaweed biodiversity data, I count the number of species within each of the sections.
This is because we view each coastal section as the local scale (the smallest unit of sampling).

The preferred option for calculating species richness is the specnumber() function in vegan:

specnumber(spp, MARGIN = 1)

Line 1
The MARGIN = 1 argument tells R to calculate the number of species within each row
(site).

 [1] 138 139 139 140 143 143 143 145 149 148 159 162 208 147 168 204
269 276 280
[20] 265 265 283 269 279 281 295 290 290 299 295 311 317 298 299 301
315 308 327
[39] 340 315 315 302 311 280 300 282 283 321 319 319 330 293 291 292
294 313 333
[58] 316

The data output is easier to understand if we display it as a tibble():

¹I am by no means an advocate for veganism.
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spp_richness <- tibble(section = 1:58,
  richness = specnumber(spp, MARGIN = 1))
head(spp_richness)

# A tibble: 6 × 2
  section richness
    <int>    <int>
1       1      138
2       2      139
3       3      139
4       4      140
5       5      143
6       6      143

Now we make a plot seen in Figure 2:

ggplot(data = spp_richness, (aes(x = 1:58, y = richness))) +
  geom_line(size = 1.2, colour = "indianred") +
  xlab("Coastal section, west to east") +
  ylab("Species richness") +
  theme_linedraw()

Figure 2:  The seaweed species richness, 𝑆, within each of the coastal sections along the
shore of South Africa.
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In other instances, it makes more sense to calculate the mean species richness of all the
sampling units (e.g. quadrats) taken inside the ecosystem of interest. How you calculate and
present species richness depend on your research question and so you will have to decide
based on your data and study.

In the seaweed study, the mean ± SD species richness across all of the 58 coastal sections is:

round(mean(spp_richness$richness), 2)

[1] 259.24

round(sd(spp_richness$richness), 2)

[1] 68.03

3.1.2 Univariate Diversity Indices
The second way we can express 𝛼-diversity is to use one of the univariate diversity indices.
The choice of which index to use should be informed by the extent to which one wants to
emphasise richness or evenness. Species richness, 𝑆, does not consider evenness as it is all
about richness (obviously). Simpson’s 𝜆 emphasises evenness a lot more. Shannon’s 𝐻′ is
somewhere in the middle.

Shannon’s 𝐻′ is sometimes called Shannon’s diversity, the Shannon-Wiener index, the
Shannon-Weaver index, or the Shannon entropy. This is a more nuanced measure that
considers both species richness and evenness (how evenly individuals are distributed across
different species).

It is calculated as:

𝐻′ = −∑
𝑆

𝑖=1
𝑝𝑖 ln 𝑝𝑖

where 𝑝𝑖 is the proportion of individuals belonging to the 𝑖-th species, and 𝑆 is the species
richness.

Simpson’s 𝜆, or simply the Simpson index, is a measure that represents the probability
that two individuals randomly selected from a sample will belong to the same species. It is
calculated as:

𝜆 = ∑
𝑆

𝑖=1
𝑝2𝑖
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where 𝑆 is the species richness and 𝑝𝑖 is the relative abundance of the 𝑖th species.

Fisher’s 𝛼 estimates the 𝛼 parameter of Fisher’s logarithmic series (see functions
fisher.alpha() and fisherfit()). The estimation is possible only for actual counts
(i.e.  integers) of individuals, so it will not work for per cent cover, biomass, and other
measures that real numbers can express. It’s especially useful for comparing the diversity
of samples with different total abundances. We will get to this function later under Fisher’s
logarithmic series.

Except for Fisher’s-𝛼, we cannot calculate these for the seaweed data, because, in order
to do so, we require abundance data—the seaweed data are presence-absence only. Let us
load a fictitious dataset of the diversity of three different communities of plants, with each
community corresponding to a different light environment (dim, mid, and high light):

light <- read.csv(here::here("data", "light_levels.csv"))
light

        Site    A    B    C    D    E    F
1  low_light 0.75 0.62 0.24 0.33 0.21 0.14
2  mid_light 0.38 0.15 0.52 0.57 0.28 0.29
3 high_light 0.08 0.15 0.18 0.52 0.54 0.56

We can see above that instead of having data with 1s and 0s for presence-absence, here we
have some values that indicate the relative number of individuals belonging to each of the
species in the three light environments. We calculate species richness (as before), and also
the Shannon and Simpson indices using vegan’s diversity() function:

light_div <- tibble(
  site = c("low_light", "mid_light", "high_light"),
  richness = specnumber(light[, 2:7], MARGIN = 1),
  shannon = round(diversity(light[, 2:7], MARGIN = 1, index =
"shannon"), 2),
  simpson = round(diversity(light[, 2:7], MARGIN = 1, index =
"simpson"), 2)
)
light_div

# A tibble: 3 × 4
  site       richness shannon simpson
  <chr>         <int>   <dbl>   <dbl>
1 low_light         6    1.62    0.78

9

Lab-04-biodiversity.qmd#species-abundance-distribution
Lab-04-biodiversity.qmd#species-abundance-distribution
Lab-04-biodiversity.qmd#species-abundance-distribution


2 mid_light         6    1.71    0.81
3 high_light        6    1.59    0.77

Evenness refers to the shape of a species abundance distribution, which suggests the relative
abundance of different species.

One index for evenness is Pielou’s evenness, 𝐽 :

𝐽 = 𝐻′

𝑙𝑜𝑔(𝑆)

where 𝐻′ is Shannon’s diversity index, and 𝑆 the number of species (i.e. 𝑆).

To calculate Pielou’s evenness index for the light data, we can do this:

H <- diversity(light[, 2:7], MARGIN = 1, index = "shannon")

J <- H/log(specnumber(light[, 2:7]))
round(J, 2)

   1    2    3 
0.91 0.95 0.89 

Berger-Parker Index indicates the proportion of the community that the most abundant
species represents. It is given by the formula:

𝑑 = 𝑁𝑚𝑎𝑥
𝑁

where 𝑁𝑚𝑎𝑥 is the number of individuals of the most common species and 𝑁  is the total
number of individuals in the sample.

Chao1 and ACE are estimators often used to predict the total species richness in a commu-
nity based on the number of rare species observed in samples.

3.2 Gamma-Diversity
Returning to the seaweed data, 𝑌 , let us now look at 𝛾-diversity—this would be the total
number of species along the South African coastline in all 58 coastal sections. Since each
column represents one species, and the dataset contains data collected at each of the 58 sites
(the number of rows), we can do:

ncol(spp) # <1>`
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[1] 847

1. The number of columns gives the total number of species in this example.

We can also use the specnumber() function to calculate 𝛾-diversity by applying it to
columns where the sum > 0:

richness_pooled <- specnumber(colSums(spp > 0))
richness_pooled

[1] 846

! Lab 3

(To be reviewed by BCB743 student but not for marks)

1. Why is there a difference between the two?
2. Which is correct?

Think before you calculate 𝛾-diversity for your own data as it might not be as simple as here!

3.3 Beta-Diversity

3.3.1 Whittaker’s 𝛽-Diversity
The first measure of 𝛽-diversity comes from Whittaker (1960) and is called true 𝛽-diversity.
In this instance, divide the 𝛾-diversity for the region by the 𝛼-diversity for a specific coastal
section. We can calculate it all at once for the whole dataset and make a graph (Figure 3):

true_beta <- data.frame(
  beta = specnumber(spp, MARGIN = 1) / ncol(spp),
  section_no = c(1:58)
)
# true_beta
ggplot(data = true_beta, (aes(x = section_no, y = beta))) +
  geom_line(size = 1.2, colour = "indianred") +
  xlab("Coastal section, west to east") +
  ylab("True beta-diversity") +
  theme_linedraw()
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Figure 3:  Whittaker’s true β-diversity shown in the seaweed data.

The second measure of 𝛽-diversity is absolute species turnover, and to calculate this, we
subtract 𝛼-diversity for each section from the region’s 𝛾-diversity (Figure 4):

abs_beta <- data.frame(
  beta = ncol(spp) - specnumber(spp, MARGIN = 1),
  section_no = c(1:58)
)
# abs_beta
ggplot(data = abs_beta, (aes(x = section_no, y = beta))) +
  geom_line(size = 1.2, colour = "indianred") +
  xlab("Coastal section, west to east") +
  ylab("Absolute beta-diversity") +
  theme_linedraw()
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Figure 4:  Whittaker’s absolute species turnover shown in action in the seaweed data.

3.3.2 Contemporary Definitions 𝛽-Diversity
Contemporary definitions of 𝛽-diversity are anchored in pairwise dissimilarity indices such
as Bray–Curtis, Jaccard, or Sørensen dissimilarities—see Koleff et al. (2003) for a broader
catalogue, and consult ?vegdist for implementation details.

3.3.2.1 Dissimilarity indices
Dissimilarity indices constitute a subset of diversity measures that rely on pairwise compar-
isons between sampling units, habitats, or ecosystems.

The outcome of such comparisons is a pairwise matrix of species dissimilarities, directly
analogous to the correlation and Euclidean distance matrices introduced in Lab 1. In Lab
2b you learned how to compute these ecological distances in R. Unlike univariate diversity
indices, these measures are multivariate, designed to quantify differences between sites,
plots, or regions rather than summarising properties of a single community.

Different indices are used depending on the data structure: Bray–Curtis and Jaccard for
abundance data, and Sørensen for presence–absence data. Because the seaweed dataset is
presence–absence, Sørensen is the appropriate choice. Regardless of whether the matrix
derives from abundance or presence–absence data, the interpretation is consistent: values
range from 0 (two sites share all species) to 1 (no species in common). By construction, the
diagonal is always 0, since any site is identical to itself.

For the seaweed dataset of 58 sites, the pairwise comparison yields
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(58 × (58 − 1))/2 = 1653

unique values, each falling between 0 and 1. These entries populate a symmetric square
matrix whose structure is both intuitive and mathematically consistent: the ecological dis-
tance between sites is expressed in a form readily amenable to further multivariate analysis.

The first step begins with the species table, 𝑌 . Using presence–absence data, we compute
the Sørensen dissimilarity index, 𝛽sør, which quantifies the dissimilarity between all pairs
of coastal sections. This measure is derived from three quantities: 𝑎, the number of species
shared by both sites; and 𝑏 and 𝑐, the numbers of species unique to each site. Formally,

𝛽sør =
2𝑎

2𝑎 + 𝑏 + 𝑐
.

Here, 𝑎 denotes the species common to both sites, while 𝑏 and 𝑐 capture the exclusive species
of each. The index ranges from 0 to 1: a value of 0 indicates identical species composition
(complete overlap), whereas a value of 1 indicates complete dissimilarity (no overlap).

In practice, the vegan function vegdist() provides access to a range of dissimilarity indices,
including Sørensen, which we apply to the species table to generate the full pairwise matrix.

sor <- vegdist(spp, binary = TRUE) # makes the lower triangle matrix
sor_df <- round(as.matrix(sor), 4)
dim(sor_df)

[1] 58 58

sor_df[1:10, 1:10] # display only the first 10 rows and columns

        1      2      3      4      5      6      7      8      9
10
1  0.0000 0.0036 0.0036 0.0072 0.0249 0.0391 0.0391 0.0459 0.0592
0.0629
2  0.0036 0.0000 0.0000 0.0036 0.0213 0.0355 0.0355 0.0423 0.0556
0.0592
3  0.0036 0.0000 0.0000 0.0036 0.0213 0.0355 0.0355 0.0423 0.0556
0.0592
4  0.0072 0.0036 0.0036 0.0000 0.0177 0.0318 0.0318 0.0386 0.0519
0.0556
5  0.0249 0.0213 0.0213 0.0177 0.0000 0.0140 0.0140 0.0208 0.0342
0.0378
6  0.0391 0.0355 0.0355 0.0318 0.0140 0.0000 0.0000 0.0069 0.0205
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0.0241
7  0.0391 0.0355 0.0355 0.0318 0.0140 0.0000 0.0000 0.0069 0.0205
0.0241
8  0.0459 0.0423 0.0423 0.0386 0.0208 0.0069 0.0069 0.0000 0.0136
0.0171
9  0.0592 0.0556 0.0556 0.0519 0.0342 0.0205 0.0205 0.0136 0.0000
0.0034
10 0.0629 0.0592 0.0592 0.0556 0.0378 0.0241 0.0241 0.0171 0.0034
0.0000

What we see above is a square dissimilarity matrix. The most important characteristics of
the matrix are:

i. whereas the raw species data, 𝑌 , is rectangular (number rows ≠ number columns), the
dissimilarity matrix is square (number rows = number columns);

ii. the number of rows/columns is equal to the number of sites (58 in this case);
iii. the diagonal is filled with 0;
iv. the matrix is symmetrical—it is comprised of symetrical upper and lower triangles.

To continue using the dissimilarity matrix, it helps if we convert it to data.frame. This
makes the matrix more amenable to a host of subsequent manipulations, including using it
for plotting:

sor_df <- data.frame(round(as.matrix(sor), 4))

! Lab 3

(To be reviewed by BCB743 student but not for marks)

These questions concern matrices produced from species data using any of the indices
available in vegdist():

3. Why is the matrix square, and what determines the number of rows/columns?
4. What is the meaning of the diagonal?
5. What is the meaning of the non-diagonal elements?
6. Referring to the seaweed species data specifically, take the data in row 1 or column 1

and create a line graph showing these values as a function of the section number.
7. Provide a mechanistic (ecological) explanation for why this figure takes the shape

that it does. Which community assembly process does this hint at?

There are different interpretations linked to 𝛽-diversity, each telling us something different
about community formation processes.
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3.3.2.2 Species turnover and nestedness-resultant 𝛽-diversity
There are two principal forms of 𝛽-diversity: species turnover and nestedness-resultant 𝛽-
diversity. Turnover reflects species replacement between sites, whereas nestedness-resultant
𝛽-diversity reflects ordered species loss or gain. The Sørensen index, 𝛽sør, can be partitioned
into these two components.

To calculate them, we rely on the betapart package (Baselga et al. 2022), which imple-
ments the framework introduced by Baselga (2010). The decomposition separates 𝛽sør
into 𝛽sim (turnover) and 𝛽sne (nestedness-resultant) components, using the functions
betapart.core() and betapart.pair(). The resulting matrices, 𝑌 1 and 𝑌 2, contain these
partitioned dissimilarities.

Once obtained, these matrices can serve as the basis for subsequent multivariate analyses—
for instance, principal components analysis (PCA) or related ordination techniques applied
to 𝑌  to identify dominant community patterns. We will pursue such analyses in BCB743.

# Decompose total Sørensen dissimilarity into turnover and nestedness-
resultant
# components:
Y.core <- betapart.core(spp)
Y.pair <- beta.pair(Y.core, index.family = "sor")

# Let Y1 be the turnover component (beta-sim):
Y1 <- data.frame(round(as.matrix(Y.pair$beta.sim), 3))

# Let Y2 be the nestedness-resultant component (beta-sne):
Y2 <- data.frame(round(as.matrix(Y.pair$beta.sne), 3))

A portion of the turnover component matrix:

Y1[1:10, 1:10]

      X1    X2    X3    X4    X5    X6    X7    X8    X9   X10
1  0.000 0.000 0.000 0.000 0.007 0.022 0.022 0.022 0.022 0.029
2  0.000 0.000 0.000 0.000 0.007 0.022 0.022 0.022 0.022 0.029
3  0.000 0.000 0.000 0.000 0.007 0.022 0.022 0.022 0.022 0.029
4  0.000 0.000 0.000 0.000 0.007 0.021 0.021 0.021 0.021 0.029
5  0.007 0.007 0.007 0.007 0.000 0.014 0.014 0.014 0.014 0.021
6  0.022 0.022 0.022 0.021 0.014 0.000 0.000 0.000 0.000 0.007
7  0.022 0.022 0.022 0.021 0.014 0.000 0.000 0.000 0.000 0.007
8  0.022 0.022 0.022 0.021 0.014 0.000 0.000 0.000 0.000 0.007
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9  0.022 0.022 0.022 0.021 0.014 0.000 0.000 0.000 0.000 0.000
10 0.029 0.029 0.029 0.029 0.021 0.007 0.007 0.007 0.000 0.000

A portion of the nestedness-resultant matrix:

Y2[1:10, 1:10]

      X1    X2    X3    X4    X5    X6    X7    X8    X9   X10
1  0.000 0.004 0.004 0.007 0.018 0.017 0.017 0.024 0.037 0.034
2  0.004 0.000 0.000 0.004 0.014 0.014 0.014 0.021 0.034 0.030
3  0.004 0.000 0.000 0.004 0.014 0.014 0.014 0.021 0.034 0.030
4  0.007 0.004 0.004 0.000 0.011 0.010 0.010 0.017 0.030 0.027
5  0.018 0.014 0.014 0.011 0.000 0.000 0.000 0.007 0.020 0.017
6  0.017 0.014 0.014 0.010 0.000 0.000 0.000 0.007 0.021 0.017
7  0.017 0.014 0.014 0.010 0.000 0.000 0.000 0.007 0.021 0.017
8  0.024 0.021 0.021 0.017 0.007 0.007 0.007 0.000 0.014 0.010
9  0.037 0.034 0.034 0.030 0.020 0.021 0.021 0.014 0.000 0.003
10 0.034 0.030 0.030 0.027 0.017 0.017 0.017 0.010 0.003 0.000

A portion of the nestedness-resultant matrix reformatted as a tibble()², which is a modern
take on a dataframe.:

Y2_tib <- as_tibble(Y2)
head(Y2_tib)

# A tibble: 6 × 58
     X1    X2    X3    X4    X5    X6    X7    X8    X9   X10   X11
X12   X13
  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
<dbl> <dbl>
1 0     0.004 0.004 0.007 0.018 0.017 0.017 0.024 0.037 0.034 0.069
0.078 0.196
2 0.004 0     0     0.004 0.014 0.014 0.014 0.021 0.034 0.03  0.065
0.074 0.193
3 0.004 0     0     0.004 0.014 0.014 0.014 0.021 0.034 0.03  0.065
0.074 0.193
4 0.007 0.004 0.004 0     0.011 0.01  0.01  0.017 0.03  0.027 0.062
0.071 0.19 
5 0.018 0.014 0.014 0.011 0     0     0     0.007 0.02  0.017 0.052
0.061 0.181

²Note that the rows are no longer numbered in the tibble view, but it can easily be recreated by seq(1:58).
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6 0.017 0.014 0.014 0.01  0     0     0     0.007 0.021 0.017 0.053
0.062 0.184
# ℹ 45 more variables: X14 <dbl>, X15 <dbl>, X16 <dbl>, X17 <dbl>, X18
<dbl>,
#   X19 <dbl>, X20 <dbl>, X21 <dbl>, X22 <dbl>, X23 <dbl>, X24 <dbl>,
#   X25 <dbl>, X26 <dbl>, X27 <dbl>, X28 <dbl>, X29 <dbl>, X30 <dbl>,
#   X31 <dbl>, X32 <dbl>, X33 <dbl>, X34 <dbl>, X35 <dbl>, X36 <dbl>,
#   X37 <dbl>, X38 <dbl>, X39 <dbl>, X40 <dbl>, X41 <dbl>, X42 <dbl>,
#   X43 <dbl>, X44 <dbl>, X45 <dbl>, X46 <dbl>, X47 <dbl>, X48 <dbl>,
#   X49 <dbl>, X50 <dbl>, X51 <dbl>, X52 <dbl>, X53 <dbl>, X54 <dbl>, …

# this is functionally eqivalent to:
Y2_df <- round(as.matrix(Y2), 4)
head(Y2_df)[, 1:13]

     X1    X2    X3    X4    X5    X6    X7    X8    X9   X10   X11
X12   X13
1 0.000 0.004 0.004 0.007 0.018 0.017 0.017 0.024 0.037 0.034 0.069
0.078 0.196
2 0.004 0.000 0.000 0.004 0.014 0.014 0.014 0.021 0.034 0.030 0.065
0.074 0.193
3 0.004 0.000 0.000 0.004 0.014 0.014 0.014 0.021 0.034 0.030 0.065
0.074 0.193
4 0.007 0.004 0.004 0.000 0.011 0.010 0.010 0.017 0.030 0.027 0.062
0.071 0.190
5 0.018 0.014 0.014 0.011 0.000 0.000 0.000 0.007 0.020 0.017 0.052
0.061 0.181
6 0.017 0.014 0.014 0.010 0.000 0.000 0.000 0.007 0.021 0.017 0.053
0.062 0.184

! Lab 3 (continue)

(To be reviewed by BCB743 student but not for marks)

8. Plot species turnover as a function of Section number, and provide a mechanistic
explanation for the pattern observed.

9. Based on an assessment of literature on the topic, provide a discussion of nestedness-
resultant 𝛽-diversity. Use either a marine or terrestrial example to explain this mode
of structuring biodiversity (i.e. assembly of species into a community).

18



! Submission Instructions

The Lab 3 assignment is due at 08:00 on Monday 18 August 2025.

Provide a neat and thoroughly annotated R file which can recreate all the graphs and
all calculations. Written answers must be typed in the same file as comments.

Please label the R file as follows:

• BDC334_<first_name>_<last_name>_Lab_3.R

(the < and > must be omitted as they are used in the example as field indicators only).

Submit your appropriately named R documents on iKamva when ready.

Failing to follow these instructions carefully, precisely, and thoroughly will cause you to
lose marks, which could cause a significant drop in your score as formatting counts for
15% of the final mark (out of 100%).
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