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Abstract

Vegetation maps are models of the real vegetation patterns and are considered im-
portant tools in conservation and management planning. Maps created through tra-
ditional methods can be expensive and time-consuming, thus, new more efficient
approaches are needed. The prediction of vegetation patterns using machine learn-
ing shows promise, but many factors may impact on its performance. One important
factor is the nature of the vegetation-environment relationship assessed and eco-
logical redundancy. We used two datasets with known ecological redundancy levels
(strength of the vegetation-environment relationship) to evaluate the performance
of four machine learning (ML) classifiers (classification trees, random forests, support
vector machines, and nearest neighbor). These models used climatic and soil varia-
bles as environmental predictors with pretreatment of the datasets (principal compo-
nent analysis and feature selection) and involved three spatial scales. We show that
the ML classifiers produced more reliable results in regions where the vegetation-
environment relationship is stronger as opposed to regions characterized by redun-
dant vegetation patterns. The pretreatment of datasets and reduction in prediction
scale had a substantial influence on the predictive performance of the classifiers. The
use of ML classifiers to create potential vegetation maps shows promise as a more
efficient way of vegetation modeling. The difference in performance between areas
with poorly versus well-structured vegetation-environment relationships shows that
some level of understanding of the ecology of the target region is required prior to
their application. Even in areas with poorly structured vegetation-environment rela-
tionships, it is possible to improve classifier performance by either pretreating the

dataset or reducing the spatial scale of the predictions.
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1 | INTRODUCTION

Vegetation maps are simplified models of vegetation complexity
carrying important messages about the position of vegetation types
along environmental gradients. The utility of such maps extends be-
yond simple descriptions and audits of vegetation patterns (vegeta-
tion types and their complexes) within an area. For instance, they
are indispensable tools in land-use and biodiversity conservation
planning (Akasaka et al., 2014; Ferrier, 2002; Franklin, Woodcock, &
Warbington, 2000) and serve as a major source of predictive mod-
eling in global-change research. Vegetation maps traditionally relied
on extensive field surveys (e.g. Beard, 1975; Kiichler & Zonneveld,
1988), yet these can be prohibitively costly and time-consuming,
especially when the area to be mapped is large and complex (Lee
& Lunetta, 1996). Recent technological advances and remotely
sensed data collection have changed the way in which vegetation
maps are made and enhanced the definition of boundaries between
mapped vegetation units at all spatial scales. New technologies also
facilitate the production of large and complex spatial (geographical
and biological) datasets that can support vegetation mapping (e.g.
Farr et al., 2007; Hijmans, Cameron, Parra, Jones, & Jarvis, 2005;
Viscarra Rossel et al., 2015). Modern vegetation science is also expe-
riencing a boost through the implementation of novel data-analytical
approaches, enhancing our understanding of how the vegetation
patterns formed and which environmental (or man-induced) drivers
might underpin these patterns (Blois et al., 2013; Lippok et al., 2014;
Reynolds, Packer, Bever, & Clay, 2003). The combination of techno-
logical advances and improved understanding allowed the develop-
ment of models to reconstruct past vegetation patterns or predict
potential vegetation patterns within a region. Such models can sub-
stantially reduce the time and cost of constructing vegetation maps.

Machine learning (ML) algorithms have been shown to produce
models that are accurate and robust (de Souza, Boerder, Matwin, &
Worm, 2016; Dickson & Perry, 2016; Osis, Hettinga, & Ferber, 2016).
In principle, a ML algorithm builds a solution (model) by examining a
sample dataset and identifying features or trends. The model is then
applied to an unexamined dataset to make predictions. While ML
has been applied to examine a diverse range of problems (e.g. Pasolli,
Truong, Malik, Waldron, & Segata, 2016; Shipp et al., 2002; Tango &
Botta, 2013), there has been a recent increase in its use within the
geospatial and ecological sciences. For instance, ML has been suc-
cessfully applied to predict species distribution (Liu, White, Newell, &
Griffioen, 2013), land-use change (Tayyebi & Pijanowski, 2014), and
hydrological regimes (Cross et al., 2015) and has also been applied to
vegetation mapping across a range of spatial scales using a variety of
algorithms (e.g. Bradter, Thom, Altringham, Kunin, & Benton, 2011;
Munyati, Ratshibvumo, & Ogola, 2013; Pesch, Schmidt, Schroeder,
& Weustermann, 2011; Zhang & Xie, 2013). When applied to vege-
tation mapping, ML algorithms (hereafter referred to as ML classifi-
ers) aim to create models that depict the relationships between the
vegetation types identified within an area and environmental (e.g.
climate, geology) or spectral reflectance variables. Although useful
maps have been produced using these methods, the performance
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(measured in terms of output accuracy) varies with quality of the
data and the scale of the classification. The impact of data quality
and scale on accuracy has received much attention (Beekhuizen
et al., 2014; Ghosh, Fassnacht, Joshi, & Koch, 2014), but the influ-
ence of ecological factors, specifically redundancy (see below), on
the performance of ML classifiers has to our knowledge not been
investigated to date. Given that vegetation classification success is
essentially a function of the vegetation-environment relationship, it
is critical that we gain a better understanding of how this relation-
ship impacts on the classification results.

The vegetation patterns and their dynamics are a result of inter-
action of plant species forming the vegetation cover with their envi-
ronment (Gotzenberger et al., 2012). The presence of each species
in these complex structures is determined by their life-history: a sum
of functional traits that mediate the species response and the abi-
otic and biotic (interactions with other species) environment (Zobel,
1992). Niche theory predicts that each species would have a unique
position along environmental gradients. However, it fails to account
that some vegetation types have many species that fulfill the same
(or very similar) functional role within the plant communities (Kang
et al., 2015) hence the functional role of those species in a plant
community is considered redundant (Walker, 1992). This means that
floristically distinct communities may occur in similar positions along
ecological gradients in the landscape. In such highly redundant sys-
tems, many distinct plant communities can be recognized but the
relationship of these communities to their environment is unclear.
In contrast, low-redundancy systems (where few, if any, plants share
responses to the factors of the ecological space) have a stronger
ecological link with the environment.

In this study, we investigated the impact of the vegetation-envi-
ronment relationship (considered as a surrogate for redundancy) on
the performance of four ML classifiers. The performance of the ML
classification models was tested by predicting (modeling) vegeta-
tion in two contrasting vegetation landscapes of Western Australia,
namely (a) eucalypt-dominated tropical savannah woodlands (char-
acterized by low redundancy) of the Northern Kimberley and (b)
temperate kwongan scrub (characterized by high redundancy) of the
Geraldton Sandplains. We also tested whether data pretreatment
through feature extraction or feature selection would have any im-

pact on the model performance.

2 | METHODS

2.1 | Datasets

Two datasets representing the vegetation of contrasting regions in
Western Australia (Mitchell Plateau and Geraldton Sandplains) were
compiled and used as test cases. Each area was analyzed individually.
Mitchell Plateau is part of the Northern Kimberley region (approx.
14°44'S, 125°53'E) and covers approximately 480,000 ha. The size
of the Mitchell Plateau, combined with the remoteness of the re-
gion and poor road infrastructure, prevents traditional field-focused
mapping methods from being efficient. A total of 148 vegetation
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plots (50 m x 50 m), listing all species and estimating their percent-
age cover, were sampled in this region. The plots were classified into
plant communities by applying the Unweighted Pair Group Method
with Arithmetic Mean (UPGMA) clustering on log-transformed data
and similarity ratio as resemblance (see Mucina, Stephenson, Daniel,
Van Niekerk, & Boonzaaier, 2013 for details). This classification
yielded 20 floristically defined plant communities. Three communi-
ties were identified as being azonal and were consequently excluded
from the modeling process. This dataset is referred to as Woodland.

Geraldton Sandplains are located 270 km north of Perth (approx.
29°49'S,115°16'E), and the region covers approximately 121,000 ha.
The sandplains are part of one of the most diverse floristic regions
of Western Australia, with more species diversity of sclerophyllous
shrubs than anywhere else in the state (Lamont, Hopkins, & Hnatiuk,
1982). A total of 542 vegetation plots (10 m x 10 m) were sampled
in this area (Woodman Environmental Consulting, 2009). This data-
set, from now on referred to as the Kwongan dataset, was classified
using Beta Flexible Clustering (beta = -0.25) based on Bray-Curtis
dissimilarity, with no prior data transformation applied. This classifi-
cation (Tsakalos, Dr3kova, Hruban, Mucina, & Dobrowolski, 2014; J.
Tsakalos, unpublished data) identified 24 distinct plant communities.

For both regions, rare vegetation classes were merged with their
most similar class(es) at the plant community classification (called Level
A) scale to ensure a minimum representation of five samples. This re-
sulted in a reduction of the number of classes in the Woodland dataset
from 17 to nine, and in the Kwongan dataset from 24 to 14. The clas-
sifier comparisons were also conducted at two broader classification
scales created by grouping the Level A classes to form a group of plant
communities called Level B, and then further by grouping the Level
B classes into a high-order group called Level C, to examine whether
redundancy changes with classification scale. At the Level B scale, the
Woodland dataset contained four classes, while the Kwongan dataset

had six classes. Both datasets contained two classes at the Level C scale.

2.2 | Predictor variables

The predictors used as input to the ML classifiers (Supporting
Information Table S1) were similar for the two regions and con-
sisted of 67 climatic variables from the BioClim database (Hijmans
et al., 2005) and 12 terrain-based layers created using the SAGA-
GIS v2.1.2 basic terrain analysis tool. The terrain variables were
derived from the 1-ARC second Shuttle Radar Topography
Mission (SRTM) digital elevation model (DEM) (Farr et al., 2007). In
Kwongan vegetation, 23 in situ sampled soil variables were consid-
ered. Because no soil samples were taken in the Woodland vegeta-
tion, 10 variables from the 1:150,000 (90 m resolution) National
Soil Grid of Australia (Viscarra Rossel et al., 2015) were used in-
stead. None of the vegetation plots occurred within the same cell.

2.3 | Data treatment

Three different predicting datasets were assessed in this study:
(a) the full dataset (FD) containing all predicting variables for each

region; (b) a dataset containing variables derived from a feature
extraction (FE) process, and (c) a dataset containing variables from
a feature selection (FS) process. FE involves the construction of a
new (smaller) feature set derived from the full dataset (Hira & Gillies,
2015). In this study, this dataset was constructed using the principle
component analysis (PCA) tool within ArcMap v10.3. The first five
principal components (PCs), which explained more than 95% of the
variation in the data, were retained at all scales for both regions. FSis
the process of discarding unimportant variables. The FS dataset was
created using the random forest (RF) tool within Salford Predictive
Modeller v8.0. A proportion (40%) of the sample data was used for
(out-of-bag) accuracy assessment. The process started with the full
set of variables, after which the importance of each variable was
assessed. Subsequent models were then created by excluding less
important variables. This process continued until the accuracy of the

model could not be improved.

2.4 | Quantification of ecological redundancy

Ecological redundancy depends on the strength of the vegetation-
environment relationship. It can be approximated by examining the
environmental variables and the quantification of their relationships
using Canonical Correlation Analysis (CCA), followed by a Monte
Carlo permutation test as implemented in CANOCO v.4.5 (Leps &
Smilauer, 2003). CCA is a form of constrained ordination involving
two matrices: one describing the species co-occurrence in plots,
and one comprising environmental variables for the same plots. The
latter matrix constrains the ordination of plots sharing species. A
Monte Carlo permutation test examines the null hypothesis that the
species composition (of communities) is independent of the environ-
mental factors. During the permutations (9,999 runs), the environ-
mental variables were randomly assigned among plots, and then new
CCA analyses were performed and assessed whether random envi-
ronmental data might produce equal or better ordination structure
than the ordination of the real data. An F-value was generated after
all permutations. If the F-value exceeded 0.05, the null hypothesis

was accepted.

2.5 | Machine learning classifiers

Four ML classifiers, namely classification tree (CT), RF, support vec-
tor machine (SVM), and nearest neighbor (NN), were tested in this
study.

CT was selected owing to its nonparametric nature, ease of inter-
pretability, ability to handle multiple data types, and speed of predic-
tion. CT proceeds through a process of recursive partitioning, which
splits the training data into a series of nodes based on increases in
homogeneity of the subsequent groups (Breiman, Friedman, Stone,
& Olshen, 1984). The result of this process is a tree composed of
nodes and terminal leaves that can easily be converted into a simple
set of if-then rules. CT outputs are easy to interpret because the
resulting tree can be scrutinized to understand why a given output
was generated (Chen, Wang, & Zhang, 2011). However, these trees
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can suffer from overfitting if allowed to grow fully without pruning
(Schaffer, 1993).

Random forest is an ensemble CT classifier (Breiman, 2001;
Chen et al,, 2011). The principle of ensemble classifiers is that a
large collection of weaker classifiers (individual CTs in this case)
can be used to create a strong classifier. RF involves the construc-
tion of large number of individual trees from the training data
(Rodriguez-Galiano, Ghimire, Rogan, Chica-Olmo, & Rigol-Sanchez,
2012). How the trees are constructed differs from CT in that a
random selection of training data is used for each tree so that each
tree is trained on a different set of data. Unlike CT which considers
all predictor variables at each node, RF selects a random subset of
predictors and these are used to identify the best split pattern. A
collection of these trees is the forest where each tree is a unique
classification in terms of a random selection of predicting variables
and the resulting splitting pattern leading to definition of classes.
Once all trees have been constructed, the objects of the studied
dataset are presented to each tree in the forest, which then pre-
dicts the class to which the object would belong to. The class that
was predicted the most frequently is assigned to the unclassified
data through a measure of a majority vote. The trees in RF are
not pruned as the collection of all trees reduces the likelihood of
overfitting. Because of its stochastic nature, RF is also relatively
insensitive to noise and outliers (Breiman, 2001). However, the
classification accuracy of RF is at a trade-off with interpretability
(Zhang & Wang, 2009).

SVM classifiers are widely used in land cover classification
studies (Duro, Franklin, & Dubé, 2012; Zhang & Xie, 2013). SVM
operates by identifying a hyperplane that separates the samples
of two classes in a variable-defined space. Finding the optimal hy-
perplane is challenging, because there are numerous planes that
could separate the training classes (Cracknell & Reading, 2014).
SVM addresses this by identifying training samples (support vec-
tors) at the transition between two classes and identifies a plane
that aligns with them. The optimal hyperplane is then identified
equidistant between these support vectors (Pal & Foody, 2010).
Kernels are often used to transform the feature space to improve
the fitting of hyperplanes. SVMs have shown capacity for pro-
ducing reliable classifications even when relatively few training
samples are used (Mountrakis, Im, & Ogole, 2011). SVMs are also
relatively insensitive to the effects of high dimensionality, which
is beneficial when dealing with a large set of predictors (Gualtieri,
2009).

NN sorts training samples according to their similarity (dis-
tance in a feature space) to each other (Bhatia, 2010). The dis-
tances between the training data can be determined using some
metrics, Euclidean distance being the most commonly applied.
When data that have not been classified are presented to the clas-
sifier, the distance of an unknown sample is calculated to each of
the neighboring training samples and the label (class) of the clos-
est training sample is assigned to the unknown data. Unlike many
other classifiers, NN retains all training samples during the classi-
fication process which can reduce efficiency when the size of the
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training set is large or when a high number of predictor variables

is considered.

2.6 | Comparison of ML classifiers

The performance of the selected ML classifiers was tested using
custom software created by Myburgh and Van Niekerk (2013)
based on the GDAL (GDAL Development Team, 2010), OpenCV
(Bradski, 2000), and LibSVM (Chang & Lin, 2011) libraries. This
software uses a 60/40 split in the observation data to create
training and validation datasets, respectively, requiring a mini-
mum of five samples per class (three for training and two for vali-
dation). Confusion matrices, which use the validation dataset to
determine which samples had their class correctly or incorrectly
predicted, were created for each model yielding the overall ac-
curacy (OA) and Kappa (K) values. All datasets were iterated 30
times to reduce the influence of the random selection of training
data.

2.7 | Statistical analyses

A range of nonparametric statistical tests are recommended for
comparing the performance of ML classifiers (see e.g. Garcia &
Herrera, 2008). In this study, we chose the aligned rank trans-
form (ART; Wobbrock, Findlater, Gergle, & Higgins, 2011) to
perform a nonparametric factorial analysis (using ANOVA proce-
dures) and multiple comparisons when significance is detected.
This analysis was performed using ARTool (Kay & Wobbrock,
2016). The testInteractions function, which is part of the Phia
module, was used for carrying out the comparisons (Rosario-
Martinez, 2015). The Holm method for p-value adjustment was

used as recommended.

3 | RESULTS

The results are summarized by classifier and scale of analysis (Levels)
in Figure 1. Examples of the differences in predicted patterns at the
finest scale (Level A) for each region are presented in Supporting
Information Figures S1 and S2. A summary table of mean accuracy
is shown in Supporting Information Table S3, while matrices show-
ing the results of all pairwise comparisons for each region/scale are

presented in Supporting Information Appendix S1.

3.1 | Ecological redundancy patterns in the
contrasting datasets

On purely statistical grounds, CCA analysis (and associated
Monte Carlo permutations) showed that the vegetation pattern-
ing of the Woodland vegetation are well explained by the se-
lected environmental variables (F-value = 0.0195), while with the
Kwongan vegetation, this was not the case (F-value = 0.0520).
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FIGURE 1 Boxplots showing classifier response to data treatment in Kwongan and Woodland at Levels (a, b, and c). The plots in section
(d) represent the overall accuracy. Key: Green = FD dataset; Red = FE dataset; Blue = FS dataset; NN = nearest neighbor; CT = classification

tree; SVM = support vector machine; RF = random forests

In terms of ecological redundancy, we suggest that the detected
vegetation-environment relationship in the Woodland is a sign of
low (if any) ecological redundancy, while Kwongan is ecologically

redundant.

3.2 | Feature selection

While not all models showed improvements in accuracy (see
Supporting Information Table S2), it was possible to reduce the
number of predictors in all cases. This dataset contained a reduced
number of 15, eight, and seven predictors for Levels A, B, and C,
respectively, in Kwongan and 16, 13, and 10 for Levels A, B, and
C, respectively, in Woodland. The FS dataset for Kwongan mainly
comprised soil and topographic variables, while the Woodland FS
dataset included some climatic, in addition to soil and topographic,

variables.

3.3 | Classifier performance

The results show that each factor (scale, region, treatment, and clas-
sifier) had a significant effect on prediction accuracy with the inter-
actions between these factors also showing significance. The two
vegetation datasets used are significantly different overall (and at
each scale), with predictions in the Woodland vegetation deemed
more accurate. The results, at each scale of analysis, are conse-
quently outlined separately for each region below. Unless other-
wise specified, all significant differences were found at the level of
p < 0.001.

3.4 | Kwongan dataset

3.4.1 | LevelA

When the full dataset was used as input to the classifiers at Level
A in the Kwongan, the accuracies of all classifiers were significantly
different from each other, with RF (41%) and NN (22%) providing
the best and worst accuracies, respectively. With the FS dataset, RF
(42%) also outperformed the other classifiers with NN (25%) again
producing the weakest models. With the FE dataset, two groups of
classifiers were found, with SVM (35%) and RF (32%) returning sig-
nificantly higher accuracies than CT (23%) and NN (24%). Response
to pretreatment varied from making no significant difference—when
either FS or FE was applied to SVM (35% each time) and NN (22%-
25%), and when FS was applied to RF (41% vs. 42%) and CT (27% vs.
29%)—to significantly reducing classifier performance—when FE was
applied to RF (32% vs. 41%) and CT (23% vs. 27%). Overall, the RF
classifier, combined with the full and FS datasets, provided the best
performance (41%, 42%) at Level A in the Kwongan dataset.

3.4.2 | LevelB

The experiments carried out at Level B in the Kwongan showed that
all classifiers produced significantly different accuracies when the full
dataset was used as input. As at Level A, RF generated the strong-
est models (60%), while the NN classifier performed relatively poorly
(34%). With both the FE and FS datasets, the classifiers formed two
distinct groups with RF (FE: 52%, FS: 58%) and SVM (FE: 51%, FS:
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56%) forming a group with higher accuracy than CT (FE: 42%, FS:
50%) and NN (FE: 40%, FS: 47%). Pretreatment did not make a differ-
ence to the performance of the CT or SVM classifiers. The accuracies
of the NN classifications were significantly different among datasets,
with FE and FS significantly improving (by 6% and 13%, respectively)
performance. Overall, three classifier dataset combinations provided
the best predictive accuracy, namely RF using the FD (60%) or FS
(58%) datasets, and SVM using the FS dataset (56%). Compared to

Level A, all classifiers performed better at Level B.

3.4.3 | LevelC

Using the full dataset as input at Level C, NN produced significantly
lower accuracies (15%-20%) compared to the other classifiers, while
the differences between SVM, CT, and RF were marginal. FS had no
significant impact on RF and CT, while FE reduced the accuracies of
these classifiers substantially (7% and 6%, respectively). NN benefit-
ted (FE: 9%, FS: 15%) the most from the pretreatments, but had no
impact on SVM performance. Overall, the highest accuracies were
achieved when the FS dataset was used as input to RF (85%) and
SVM (84%).

3.5 | Woodland dataset

3.5.1 | LevelA

Using the full dataset as the input at Level A, RF returned the high-
est accuracy (50%) with SVM (20%) and NN (13%) producing the
weakest models. When the FE dataset was considered, two groups
with notably different accuracy statistics were noted. RF (45%)
and SVM (48%) formed a group with significantly higher accura-
cies than CT (39%) and NN (39%), while no significant differences
among classifiers within each group were noted. With the FS data-
set, it was found that CT returned the lowest accuracy (42%), while
the results of RF (52%), SVM (50%), and NN (49%) were on par with
one another.

The treatments resulted in significant improvements to the accu-
racies of SVM (FE: 48%, FS: 50%) and NN (FE: 39%, FS: 49%), but had
no effect on CT. The FS dataset had no effect on the performance
of RF, but FE significantly reduced its accuracy (by 5%). Overall, the
full dataset using the RF classifier (50%)—or the FS dataset using RF
(52%), SVM (50%) or NN (49%)—performed the best at Level A in the
Woodland.

3.5.2 | LevelB

Using the full Woodland dataset as input at Level B, all classifi-
ers returned statistically different accuracies, with RF (76%) per-
forming the best and NN (31%) generating the weakest models.
Pretreating the full dataset made significant improvements to the
performance of CT (FE: 69%, FS: 69%), SVM (FE: 73%, FS: 75%),
and NN (FE: 66%, FS: 72%), but had no effect on RF. Overall, the
RF classifier consistently (using any of the datasets) outperformed

the other classifiers (74%-77%), while the SVM classifier produced
similar results when the FE (73%) or FS (75%) datasets were used

as input.

3.5.3 | LevelC

At Level C, RF (85%) and CT (81%) outperformed the other classifiers
when the full dataset was used as input. NN (30%) returned the low-
est accuracy. Pretreating the dataset had no effect on the accuracy
of CT and RF, but significantly improved the performance of both
SVM (FE: 84%, FS: 87%) and NN (FE: 82%, FS: 82%). Overall, the
highest performance was obtained using the FE or FS datasets with
either SVM (FE: 84%, FS: 87%) or RF (FE: 83%, FS: 84%).

In general, the Kappa values resulting from the experiments
agree with the overall accuracies. However, some interesting dif-
ferences were noted. For example, when the full dataset was used
as input in Woodland, the Kappa values of SVM (0.02-0.08) and NN
(0.005-0.03) were very low, which indicates that the models pro-
duced accuracies that are similar to what one would expect from
random class assignment. While accuracy increased at Levels B and
C, these classifiers were unable to return Kappa values of above
0.08 (on average) when the full dataset was used as input. However,
the application of FE and FS resulted in substantial increases in re-
liability. For example, at Level A, the average Kappa for the SVM
classifier increased by 0.34 (FE) and 0.23 (FS), while for NN, it in-
creased by 0.26 (FE) and 0.21 (FS). These increases became more
pronounced as the scale was reduced. For instance, in the case of
SVM, accuracies increased by 45% from Levels A to C and 13% from
Level B to C.

4 | DISCUSSION

The results of this study show that the vegetation of the Kwongan
is ecologically redundant. The hypothesis that such redundancy
reduces the power of ML classifiers in predicting vegetation pat-
terns is supported by the observations that the accuracies of the
Kwongan classifications—especially at Levels A and B—were consist-
ently lower compared to those of Woodland. It is well known that
classifiers behave differently under conditions of data redundancy,
however, given that the same number of features was used as input
and given that the same dimensionality reduction methods were
employed in both study areas, the differences in accuracy are most
likely due to inherent redundancies in the environmental variables
used. The significant difference in classifier performance between
the regions shows that—based on the ecological relationships of the
regions—we can predict the vegetation patterns of the nonredun-
dant Woodland vegetation with greater confidence than those of
the Kwongan. Although other factors may also have contributed to
the differences in accuracy—for example, the classification schemes
(the woodland vegetation types are better defined) and the differ-
ences in data sources (ground collected soil vs. the interpolated soil
data)—the results offer evidence that ecological redundancy must
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have been a major driver. While different resemblance and cluster-
ing methods can change the final classification, the resulting regional
systems used in this study were selected through a comparison and
validation process (e.g. Tichy, Chytry, Hajek, Talbot, & Botta-Dukat,
2010). While different combinations were used in each region, they
represent the best systems for each type.

The finding that higher accuracies were obtained when the com-
plexity was reduced (by carrying out the experiments at coarser
scales) was expected, but the way in which the classifiers responded
to the FE and FS data treatments provided new insights into the im-
pact of ecological redundancy on ML classifications. Both FE and FS
have been found in many studies (Babaoglu, Findik, & Bayrak, 2010;
Chandrashekar & Sahin, 2014; Howley, Madden, O’'Connell, & Ryder,
2006) to improve classification accuracy, and it was therefore expected
that predictions following these methods would be more accurate
than predictions made on the full dataset. However, in the ecologically
redundant Kwongan, these methods led to statistically significant clas-
sification improvements in only three scenarios, whereas in the nonre-
dundant Woodland, they improved accuracies 12 times. Furthermore,
the use of FE in the Kwongan was found to significantly reduce the
performance of the classifiers four times. These findings can be ex-
plained within the context of the relationship each vegetation type
has with the environment. The vegetation-environment relationship
has little structure where redundancy is present and data treatments—
designed to capture the variability (FE) of the environment or reduce
uninformative variables (FS)—thus have little effect. An unexpected
result was that the tree-based classifiers (CT and RF) showed little re-
sponse to both FE and FS in both regions. For FE, this is likely a result
of the way that these classifiers create their predictions, with the re-
cursive partitioning possibly not as strong using the transformed data.

RF unresponsiveness to FS is attributed to its use of a randomly
selected subset of features during model building. Feature selection
is consequently inherent in the algorithm. Although some studies (e.g.
Gilbertson & Van Niekerk, 2017) have shown that RF classification ac-
curacies can be improved using FS pretreatments, it was not the case
with our data. For both regions and all classifiers, where a difference
between the treatments was found in all cases FS was found to be
significantly more accurate. Difference in response between the two
treatments was more common in the Kwongan than in Woodland,
suggesting that in conditions of redundancy, FS is more beneficial
(or at least not detrimental) to classification accuracy compared to
FE. We suggest that this is due to the creation of the PCs in the FE
process. In this process, the input features (environmental variables)
which show the greatest variation are considered (reasonably) to be
more important in the construction of the new feature set (Shlens,
2014). Itis important that, this process is conducted independently of
the prediction targets (vegetation classes). This is, in contrast to the
FS process in which the feature set, examined against our classes to
determine which are the most informative in separating the classes.
Given the ecological redundancy of the Kwongan, it is possible that
the FE process downplayed the importance of those features which

better separate the classes.

In each region, the RF and SVM classifiers consistently outper-
formed the other classifiers. This is consistent with the results of
other studies (Duro et al., 2012; Pal, 2005; Roli & Fumera, 2001),
where it was found that RF and SVM were more successful, espe-
cially under complex conditions. One can argue that, in this study,
ecological redundancy contributed to complexity and that it offers
an explanation why these classifiers performed better than NN and
DT.

The use of ML classifiers to create robust maps of vegetation
patterns is becoming more popular. However, the influence of eco-
logical features on these classifiers is still poorly understood. The
results of this study show that, although ecological complexity
(i.e. redundancy) has a negative effect on classifier performance,
it is not the only factor that contributed to overall performance of
classifiers. The unexpectedly poor performance of NN and SVM
in the Woodland suggests that the number and quality of train-
ing samples may have affected (through the addition of noise) the
classifications. The finding that both FE and FS improved the per-
formance of these classifiers in this region provides some support
for this notion.

This study focussed on the application of ML to produce potential
vegetation maps and as such purposefully omitted additional sources
of information (such as satellite reflectance data) as this would have
restricted the predictions to extant vegetation. However, it would be
beneficial to examine what effect the inclusion of these datasets (ei-
ther in addition to the environmental data or as sole predictors) may
have on improving modeling accuracies. It is clear that more work is
needed to find cost-efficient and accurate methods for generating
vegetation maps over large and complex areas.
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