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Abstract. As important marine mesopredators and sensitive indicators of Antarctic
ecosystem change, penguins have been a major focus of long-term biological research in the
Antarctic. However, the vast majority of such studies have been constrained by logistics and
relate mostly to the temporal dynamics of individual breeding populations from which
regional trends have been inferred, often without regard for the complex spatial heterogeneity
of population processes and the underlying environmental conditions. Integrating diverse
census data from 70 breeding sites across 31 years in a robust, hierarchical analysis, we find
that trends from intensely studied populations may poorly reflect regional dynamics and
confuse interpretation of environmental drivers. Results from integrated analyses confirm that
Pygoscelis adeliae (Adélie Penguins) are decreasing at almost all locations on the Antarctic
Peninsula. Results also resolve previously contradictory studies and unambiguously establish
that P. antarctica (Chinstrap Penguins), thought to benefit from decreasing sea ice, are instead
declining regionally. In contrast, another open-water species, P. papua (Gentoo Penguin), is
increasing in abundance and expanding southward. These disparate population trends accord
with recent mechanistic hypotheses of biological change in the Southern Ocean and highlight
limitations of the influential but oversimplified “sea ice” hypothesis. Aggregating population
data at the regional scale also allows us to quantify rates of regional population change in a

way not previously possible.
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INTRODUCTION

Time series data necessary for ascribing causes to
population change often derive from a few long-term
studies that yield detailed understanding of dynamics for
particular local populations (e.g., Holmes et al. 1986,
Coulson et al. 2001, Boersma 2008), but do not provide
the spatial coverage required for regional-scale infer-
ence. The trade-off between demographic detail and
spatial coverage plagues population biologists with
limited resources (Marsh and Trenham 2008), and
decisions about conservation and management often
must be based on imperfect or incomplete information
(Kareiva et al. 2000, Holmes 2001). This is particularly
true in remote areas such as Antarctica, where logistical
challenges limit most scientific research to permanent
research stations.

As important mesopredators in the Antarctic marine
ecosystem, penguins have long been hailed as indicators
of environmental change, whether as a result of resource
extraction (Ainley et al. 2006, 2007, Ainley and Blight
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2009), human visitation (Cobley and Shears 1999,
Carlini et al. 2007, Trathan et al. 2008, Lynch et al.
2010), or climate change (Fraser et al. 1992, Croxall et
al. 2002, Forcada et al. 2006, Forcada and Trathan
2009, Trivelpiece et al. 2011). Hypotheses regarding the
cause of penguin population change have been hotly
debated as accepted dogma among penguin biologists
has swung between various competing, but not incom-
patible, paradigms (Croxall 1992, Fraser et al. 1992,
Croxall et al. 2002, Ainley et al. 2003, 2007, Nicol et al.
2007, Trivelpiece et al. 2011). Findings from detailed but
spatially restricted demographic studies of local popu-
lations (Fraser et al. 1992, Forcada et al. 20006)
frequently have been extrapolated to regional popula-
tions many orders of magnitude larger.

One of the challenges in understanding the environ-
mental drivers of penguin population dynamics has been
the almost exclusive reliance on detailed long-term
studies of individual breeding populations. Although
they provide invaluable information on diet (Volkman
et al. 1980, Jablonski 1985, Lishman 1985, Lynnes et al.
2004, Rombola et al. 2006, Miller and Trivelpiece 2007),
breeding success (Cobley and Shears 1999, Lynnes et al.
2004, Rombola et al. 2006, Hinke et al. 2007),
recruitment (Trivelpiece et al. 2011), and foraging

1367



1368 HEATHER J. LYNCH ET AL.

® South Orkney
\ Islands

Northeast

South Shetland . .Region
. Islands -~ - r :
0o b |

W s

< ° o
. 2
_ )
T
N e an
65-, Central-west 3y & V
Region . \
7
e
Yl
700 -

v

Southwes}’g_ Mo
Region ",: 5

Fic. 1. Antarctic Peninsula and sites (solid circles) for
which data for at least two years were available for trend
analysis (see also Appendix: Table Al). The dashed line
represents the first principal component of the geographic
coordinates of these sites, which is used to order sites along a
one-dimensional gradient reflecting the northeast-southwest
alignment of breeding sites. Populations are grouped into six
regions: the South Orkney Islands, Elephant Island, Northeast,
South Shetland Islands, Central-west, and Southwest.

dynamics (Trivelpiece et al. 1987, Lynnes et al. 2002,
Kokubun et al. 2010), such studies cannot address
whether population changes at individual study sites
reflect changes at other sites, nor can they be used to
infer regional rates of population change. Although a
few studies have attempted to draw inference from
analyses at several sites, these studies are either confined
to several neighboring populations (e.g., Fraser and
Patterson 1997, Hinke et al. 2007) or focus on
differences among very disparate populations experi-
encing wholly different environmental conditions (e.g.,
Croxall et al. 2002). Other than an analysis of trends at
several long-term study sites in Woehler et al. (2001), we
are aware of no synthetic analysis designed specifically
to capture both local- and regional-scale spatial patterns
of penguin population trend, as we have done in this
analysis of the Antarctic Peninsula (AP) region.

Our goals for this analysis were threefold. First, we
wanted to assemble the most complete, spatially explicit
picture of population trends for the pygoscelid penguins
(Pygoscelis antarctica, Chinstrap Penguin; P. adeliae,
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Adélie Penguin; P. papua, Gentoo Penguin) on the
Antarctic Peninsula, focusing on the 31-year period
(1979/1980-2009/2010) for which the vast majority of
census data exist. Although previous publications,
including several of our own (e.g., Naveen et al. 2000,
Lynch et al. 2008, 2010), report census data in their raw
form, and others discuss broadscale population changes,
but in the absence of a detailed time series analysis (e.g.,
Trivelpiece et al. 2011), this is the first attempt to
quantitatively synthesize all publically available penguin
census data for the AP. Second, we wanted to use these
spatially distributed time series data to estimate regional
rates of population change, key conservation metrics
that have heretofore been inaccessible. Finally, we
wanted to determine whether spatial patterns in
population trend were correlated with spatial patterns
in key environmental variables and, in doing so, provide
a complementary perspective to time series analyses of
fixed study populations.

Our synthetic analysis draws heavily on data from an
opportunistic vessel-based monitoring program called
the Antarctic Site Inventory (ASI), which uses research
vessels and commercial cruise ships as platforms for
breeding bird surveys as described in Naveen et al.
(2000) and Lynch et al. (2008). We have combined these
data with additional published census data from 1979
through 2010 (including 11 breeding sites not included
in the ASI) to create the most complete database of
pygoscelid penguin census data currently available for
the Antarctic Peninsula region (Fig. 1; Appendix: Table
Al). This regional perspective allows us to model spatial
variation in population trend as a function of environ-
mental gradients, highlighting species-specific responses
to the Antarctic Peninsula’s changing climate. Addi-
tionally, our data and modeling approach allow us to
produce the most accurate estimates to date of the
magnitude of regional-scale penguin population change
on the Antarctic Peninsula and, as importantly, their
associated uncertainties.

Although opportunistic sampling, such as that pro-
vided by the Antarctic Site Inventory, follows none of
the classic survey protocols (e.g., revisit every site every
year, rotating panel; see Urquhart and Kincaid 1999),
the distribution of visits can be approximately described
as an augmented random revisit design whereby sites are
surveyed at random among the finite population of
penguin breeding sites and augmented with a (smaller)
set of sites surveyed every year. Because regional
estimates of population change require simultaneous
estimates of abundance (or population status) and trend,
an optimal survey design must balance the acquisition of
data at new sites against repeated sampling at previously
surveyed sites (Urquhart et al. 1998). Although only a
full power analysis incorporating all of the variance
components would allow for the development of an
ideal sampling strategy (Urquhart and Kincaid 1999),
regular surveys at more than a select few populations is
currently infeasible due to the logistical challenges of
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Antarctic research. In light of these limitations, we
consider opportunistic sampling supplemented with
regular sampling at long-term study sites to provide
the best currently available approach for genuine
regional-scale inference.

METHODS
Description of census data

Our unit for assessing population trends was the
breeding “site,” which (with few exceptions) we define as
being all those penguins accessible by foot from a single
landing point. Historically this has been defined as a
penguin “rookery” (Penney 1968, Ainley et al. 1983).
These sites and their names follow in the tradition of
previous penguin monitoring and census data aggrega-
tion efforts on the Antarctic Peninsula (Croxall and
Kirkwood 1979, Poncet and Poncet 1987, Woehler 1993,
Woehler and Croxall 1997), and include several cases in
which a chain of small islands or several small adjacent
rookeries have been aggregated into a single site (e.g.,
the Fish Islands, the Yalour Islands, Beneden Head).

The traditional and widely adopted scheme for
assessing penguin census precision involves a five-point
scale (Croxall and Kirkwood 1979, Woehler 1993):
N(C)1, nests (chicks) individually counted, accurate to
better than *+5%; N(C)2, nests (chicks) counted in
known area, then extrapolated over total colony area,
accurate to =5-10%; N(C)3, accurate estimate of nests
(chicks), to =10-15%; N(C)4, rough estimate of nests
(chicks), accurate to =25-50%; N(C)5, estimate of nests
(chicks) to nearest order of magnitude.

There were 70 sites between 60°36’ S and 68°18’ S with
two or more penguin abundance counts between 1979/
1980 and 2009/2010 (Fig. 1), representing ~4%, 8%, and
41% of the Chinstrap, Adélie, and Gentoo Penguin
populations in the region, respectively (H. J. Lynch,
unpublished data). A complete description of all sites
considered for analysis, along with data availability and
data sources, is included in the Appendix: Table Al.

Analytical approach

Our analysis required the integration of census data of
different types (i.e., both nests and chicks) drawn from
multiple sources and of variable quality. Although 80%
of all the census data were nest counts and the majority
(86%) were in the highest precision category (N1 for
nests or C1 for chicks), we developed a flexible model
that could integrate additional information in the form
of chick counts or lower precision nest counts to provide
the most complete spatial and temporal assessment of
penguin population trends. To integrate these disparate
data, we used a hierarchical Bayesian model that
incorporated both nest and chick censuses, included a
year- and species-specific estimate of breeding produc-
tivity, accounted for variable precision among census
counts, and corrected for potential bias due to delays in
census timing relative to peak egg laying or chick
creching periods.
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Very few sites had time series complete enough to
assess temporal correlations between local populations
and environmental or climatic variables. Instead, our
analysis focused on correlations that might explain the
spatial distribution of long-term population trends over
the period 1979/1980 to 2009/2010. Our analysis focused
on two environmental indices pertinent to the debate
surrounding drivers of population change (e.g., Clarke
et al. 2007, Ducklow et al. 2007): summer chlorophyll a
concentration and long-term rates of spring (November)
sea ice change.

Model details

Census counts (indexed by i) were modeled on the
logarithmic scale as being normally distributed about
the “true” nest or chick population y with a variance
that reflected census-specific observation error:

log(Count;) ~ N(y;, 112) (1)

Note that y, and its derivative z introduced below, reflect
abundance on the log scale. Correspondingly, t reflects
the fractional error, consistent with the manner in which
measurement error has historically been recorded. The
addition of an equation for measurement error allowed
us to account for the high degree of variability in data
quality across the data set. Taking the upper limits of the
five precision categories previously described (5%, 10%,
15%, 50%, and 500% [our quantitative interpretation of
the fifth category]) as reflecting two standard deviations,
the standard deviation t is taken to be 0.025, 0.05, 0.075,
0.25, and 2.5 for categories 1-5, respectively.

Nest counts at the peak of egg laying were considered
equivalent to the number of breeding pairs. A year- and
species-specific breeding productivity (chicks/nest) was
used to estimate the number of breeding pairs from
counts of chicks, and correction factors for “late” nest
or chick counts (ny and ¢y in Eq. 2, respectively) were
also estimated. The true nest or chick population y is,
therefore, related to the number of breeding pairs z in
census 7 at site j in year ¢, by

Yijs = zju + nol [LNC;] 4 oI [LCC;] 4 log(prod, )I[{CC;]
(2)

where y represents the true count from Eq. 1, I[...]
represents the indicator variable, LNC and LCC
represent late nest counts and late chick counts,
respectively (see Appendix), CC represents a chick
count, and prod, represents productivity, the estimated
number of chicks/nest in year ¢ as will be described in
more detail.

The number of breeding pairs z at site j in year ¢ was
modeled as a linear function of time:

zj, = intercept; + trend; X (z — 2000) (3)

where year 7 is defined relative to 2000 to provide for a
natural interpretation of the population intercept. For
each species, the trends at each breeding site j were

85UR01 7 SUOWILIOD 3AIER.D 3|qedjdde sy Aq peussnof ae sspire YO 8sN JO S8|nJ Joy ARig1T 8UIUO A1 UO (SUOTIPUCD-PUB-SWLBIW0D A8 1M AR.q 1[Bul|UO//:SdNY) SUONIPUOD Pue SWe | 8U1 88S *[£202/70/0E] U Arid1T8UlUO AB|IM ‘YoJessay [edIpe|N Uedliyy YINos Aq T'88ST-TT/068T 0T/I0p/woo 8|1 Areiq1puljuo's feuuno fess//:sdny wouy pepeojumoq ‘9 ‘ZT0Z ‘02T66E6T



1370 HEATHER J. LYNCH ET AL.

modeled as being drawn from a normal distribution:
trend; ~ N\ (1o + o X sea ice; + P X chl-qj, 6%)  (4)

where the expectation of the trend at each site is modeled
as a linear function of the rate of change in November
sea ice (“sea ice”), and average summer chlorophyll a
(“chl-a”) (see Appendix). Through pg, which represents a
species-specific intercept for the expected rate of popu-
lation change, sites with more data could inform the
estimation of population trends at sites with less data,
and anomalously high or low trends resulting from
sparse sampling were adjusted toward the species mean.
Models were fit using WinBUGS (Lunn et al. 2000) and
inferences were derived from 10000 samples drawn
following a burn-in period of 10000 samples. Model
convergence was assessed by the Gelman-Rubin conver-
gence statistic (Brooks and Gelman 1998) as applied to a
set of randomly initialized chains and was unambiguous
in all cases.

All parameters were given broad, noninformative
prior distributions (N(0,1000) for pg, o, B, ng, co;
Gamma (0.01,0.01) for 1/c?) with the exception of
breeding productivity, whose prior Uniform(0,2) reflect-
ed the two-egg clutch size of the Pygoscelis penguins
(Shirihai 2008).

It is important to emphasize that the model was
deliberately restricted to the minimally complex log-
linear model described in Eq. 1-4 because our primary
goal was to analyze all available data and, using a single
model, assess trends over as many locations as possible
(including those with as few as two census counts).
Although more complex models including, among other
things, both process variability and measurement error
(sensu Clark and Bjgrnstad 2004) are possible for a very
small subset of locations with relatively complete time
series (e.g., Admiralty Bay, Jougla Point), these models
do not permit a synthetic, spatial analysis of trend and
hence are not developed in this context.

Productivity sub-model

Our model includes the breeding productivity, prod,
(chicks/nest), as a parameter to be estimated from the
census data. Productivity was modeled as a function of
year ¢ and species, but not of location (i.e., all colonies
of a given species were assumed to share the same
productivity in a given year). We aggregated all the sites
for this adjustment because there were not enough data
to estimate site-specific productivity for each year, and
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doing so reduced the number of productivity parameters
to be estimated from 3255 to 93. For each species, the
model estimates prod, as that value which, when applied
to the chick counts for year ¢, minimizes model error
across all sites. Estimates of productivity derived from
the model are shown in the Appendix: Fig. Al (see also
Appendix: Tables A2-4).

Estimating regional rates of change

Regional rates of population change were estimated
by a weighted average of draws from the posterior
distributions for site-level trend, with weights propor-
tional to total population size at each site. Because the
relative weight of each site changes as populations grow
or shrink over time, we considered regional rates of
change as estimated for the midpoint (1995) of our study
period.

Incomplete census counts

There were five sites for which repeated censuses had
been conducted for a clearly defined subgroup of the
entire site-wide population (fixed “colonies” within the
“rookery”): Turret Point (Adélie Penguins), Paulet
Island (Adélie Penguins), Cape Lookout (Chinstrap
Penguins), Baily Head (Chinstrap Penguins; see Plate 1),
and Hannah Point (Chinstrap Penguins). Because census
data were either insufficient or unavailable to assess
trend at the scale of the entire site, we could not
determine whether trends at the colony scale reflected
trends at the site scale. Consequently, these sites were
not used in the estimation of regional rates of change.

RESULTS

Out of 29 breeding sites for which sufficient data were
available to assess trend, the Chinstrap Penguin
population was found to be declining significantly at
16 sites and increasingly significantly at seven sites
(Appendix: Table A5). Out of 24 breeding sites, Adélie
Penguins were declining significantly at 18 sites and
increasing significantly at only three sites (Appendix:
Table A6). Using rates of change simulated from the
model’s posterior distribution for trend and weighting
by population size (as predicted by the model for the
midpoint [1995] of the study period), average rates of
decline are found to be 1.1% = 0.8% and 3.4% = 1.3%
per annum, respectively (Fig. 2; Appendix: Figs. A3-9).
Colony size precluded complete censuses of the largest
Adélie and Chinstrap Penguin colonies, and estimates of

—

FiG. 2. (a) Distribution of Antarctic Peninsula-wide population trends (fractional rate of change per annum) for the Chinstrap
Penguin (Pygoscelis antarctica), Adélie Penguin (P. adeliae), and Gentoo Penguin (P. papua), assuming a population-weighted
average of the trends shown in panels (b)—(d). (b-d) Population trends for (b) Chinstrap, (c) Adélie, and (d) Gentoo Penguin as
estimated for the period of 1979/1980 to 2009/2010 (see also Appendix: Tables A5-7 and Figs. A3-14). The x-axis is the location of
each site along the northeast-southwest gradient reflected by the dashed line in Fig. 1. The y-axis represents the fractional rate of
change per annum. Error bars represent =2 SD for the estimation of population trend. A horizontal dashed line at zero has been
added to distinguish between sites with positive and negative trend. Sites with outlying trends (visually assessed) or noted in the text
have been numbered: (1) Almirante Brown Station, (2) Biscoe Point, (3) Booth Island, (4) Brown Bluff, (5) Cape Lookout, (6)
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Devil Island, (7) Heroina Island, (8) Moot Point, (9) Orne Islands, (10) Palmer Station vicinity, (11) Penguin Point, (12) Point
Thomas, (13) Pourquoi Pas Island, (14) President Head (Snow Island), (15) Red Rock Ridge, (16) Shingle Cove, (17) Vernadsky
Station, (18) Waterboat Point, (19) Watson Peninsula, (20) Yalour Islands.
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Fic. 3. (a) Adélie Penguin (Pygoscelis adeliae) population
change vs. summer chlorophyll ¢ concentrations with the
regression line from Eq. 4 in black (95% CI in black dashed
lines). (b) Gentoo Penguin (P. papua) population change vs.
rate of change in November sea ice concentration (1979-2007)
with the regression line from Eq. 4 in black (95% CI in black
dashed lines). Black arrows point to colonies established since
1979/1980. (c,d) Posterior distributions reflecting model
estimates for o (regression coefficient for November sea ice)
and B (chlorophyll ). No y-axis scale numbers are included
because the actual absolute values are not meaningful.
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regional change do not reflect trends at these sites.
However, we found no relationship between colony size
and population trend (Appendix: Fig. A2) to suggest a
corresponding bias in our aggregated assessment of
regional trend (Fig. 2). In contrast to the other two
Pygoscelis species, Gentoo Penguin populations are
significantly increasing at 32 of 45 sites and significantly
decreasing at only nine sites, yielding a weighted average
rate of increase of 2.4% = 0.3% per annum (Fig. 2;
Appendix: Table A7, Figs. A10—-14).

Adélie Penguin population trends were significantly
and positively correlated with mean summer chlorophyll
a (posterior mean £ SD for o in Eq. 4=0.061 £ 0.026),
which has been used as a proxy for phytoplankton and
their consumers, Euphausia superba, Antarctic krill
(Dierssen et al. 2000, Atkinson et al. 2004; Fig. 3a, d).
Adelie Penguin trends were not significantly correlated
with loss of November sea ice (Fig. 3c). Although they
are generally declining, Chinstrap Penguin trends were
uncorrelated with mean summer chlorophyll ¢ and
November sea ice trends.

In contrast to region-wide declines in offshore-
foraging Chinstraps and Adélie Penguins, inshore-
foraging Gentoo Penguins are increasing throughout
the western Antarctic Peninsula. Gentoo Penguins are
declining or highly variable on the eastern AP (Fig. 2d:
Sites 4 and 7), in contradiction to reports implying that
they may be increasing or expanding their range in this
region (McClintock et al. 2010). Gentoo Penguin
populations grew fastest at seven sites near the southern
boundary of their breeding range where Gentoos have
established new colonies within the last 20 years (Fig.
2d, arrows in Fig. 3b; Appendix: Figs. A10—14). Gentoo
Penguin colonies are restricted to areas with <50%
November sea ice coverage (Fig. 4) and Gentoo Penguin
population increases are significantly correlated with
loss of November sea ice (posterior mean = SD for 8 in
Eq. 4=-0.089 = 0.029; Fig. 3b, c), largely due to rapid
population growth at new colonies near the Gentoo
Penguin’s southern range boundary on the western AP.
These new, rapidly growing, Gentoo colonies are part of
a southward movement of the Gentoo Penguin’s
southern breeding range, facilitated by an expansion of
breeding areas with <50% November sea ice coverage.

DiscussioN

Since the early 1990s, penguin population dynamics
on the Antarctic Peninsula have been interpreted largely
within the context of the “sea ice hypothesis” (Fraser et
al. 1992). Developed in light of ecological observations
and divergent trends observed in the pagophilic (ice-
loving) Adélies and the pagophobic (ice-avoiding)
Chinstraps at long-term study sites on the AP, the sea
ice hypothesis asserted that penguin population dynam-
ics are controlled “bottom-up” through sea ice and its
effect on over-winter survival. With years of heavy sea
ice occurring with decreasing frequency on the western
AP, Adé¢lies were predicted to decline while Chinstraps
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(and, in subsequent versions of the hypothesis, Gentoos)
were predicted to increase. The sea ice hypothesis was
developed in response to an earlier, although not
incompatible, alternative hypothesis positing that pen-
guin population dynamics were instead controlled
through “top-down” factors such as competition for
prey, particularly with whales that were once harvested
intensely (Laws 1977) but have more recently rebounded
(Fraser et al. 1992, Ainley et al. 2007). Because all three
of the pygoscelids prey extensively on Antarctic krill
during the breeding season, this “krill surplus” hypoth-
esis suggested that all three pygoscelids should have
benefitted from reduced intra-trophic competition. A
recent analysis of population and mark-recapture
banding data from the South Shetland Islands (Trivel-
piece et al. 2011) focuses on declining juvenile recruit-
ment among Adélie and Chinstrap Penguin populations
that, it is argued, reflects decreasing krill availability on
the western AP.

Arguments for or against these various hypotheses
have relied heavily on time series analyses of individual
breeding populations. In the absence of a regional
perspective on population trends, it is difficult to know
to what extent differences between studies are driven by
spatial variation in environmental conditions and
species’ responses to them. To date there has been no
regional-scale analysis of population trends in which to
contextualize these more detailed studies, and no way to
extrapolate trends at individual sites to rates of
population change at the regional scale. By sampling a
large number of sites distributed broadly over the
Antarctic Peninsula, our results resolve the apparent
paradox between studies showing Chinstrap population
increases (Fraser et al. 1992, Smith et al. 1999, Ducklow
et al. 2007, McClintock et al. 2008) and those showing
Chinstrap population declines (Forcada et al. 2006,
Hinke et al. 2007, Trivelpiece et al. 2011). Despite the
decreasing extent and duration of sea ice in the
Bellingshausen-Amundsen Seas sector (Smith and Stam-
merjohn 2001, Parkinson 2002, Zwally et al. 2002), our
analyses make clear that ice-avoiding Chinstrap Pen-
guins are declining regionally along with Adélie Pen-
guins, a species whose decline has been widely reported
as indicating widespread changes in the Antarctic
marine ecosystem (Fraser et al. 1992, Trathan et al.
1996, Trivelpiece and Fraser 1996, Smith et al. 1999,
Croxall et al. 2002, Forcada et al. 2006, Clarke et al.
2007, Ducklow et al. 2007, Forcada and Trathan 2009).
Data suggesting Chinstrap population increases have
come primarily from populations in the vicinity of
Palmer Station (64°46" S, 64°05" W; site 10 in Fig. 2b)
near the species’ southern range limit; in the context of a
spatially integrated assessment, they do not reflect the
majority of other AP breeding sites.

Chlorophyll @ has declined in the waters off the
northwestern coast of the AP over the last two decades
(Montes-Hugo et al. 2009), consistent with other studies
showing long-term declines in krill stocks (Loeb et al.
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Ice cover
OO/O

100%

Fic. 4. Presence (red circles) and known absences (blue
squares) of Gentoo Penguin breeding overlaid on a map of
average November sea ice concentrations (1979-2007; Cavalieri
et al. 1996, updated 2008). The dashed line indicates the 50% ice
coverage contour.

1997, Atkinson et al. 2004). Krill are the dominant prey
for Adélie Penguins on the AP (Lishman 1985, Lynnes et
al. 2002, Hinke et al. 2007) and their spatially extensive
population declines are consistent with time series
analyses suggesting the importance of krill dynamics
for foraging effort, reproductive success, and juvenile
recruitment (Fraser and Hofmann 2003, Lynnes et al.
2004, Hinke et al. 2007). Despite the opposing
tolerances of Chinstrap and Adélie Penguins for sea
ice coverage during the breeding season (Fraser et al.
1992), population trends for these two species were not
correlated with changing November sea ice conditions,
suggesting that sea ice conditions during the breeding
season do not represent a significant constraint for
existing colonies.

Our results provide regional-scale support for the
view that sea ice dynamics play a more complex role in
the ecology of the pygoscelid penguins than is reflected
by the classic sea ice hypothesis, and that other factors,
such as over-winter juvenile survival (Hinke et al. 2007,
Trivelpiece et al. 2011), periodic krill recruitment events
(Fraser and Hoffmann 2003, Miller and Trivelpiece
2007, Trivelpiece et al. 2011), and episodic climate
anomalies (Forcada et al. 2006) must mediate the
impact of sea ice on Chinstrap and Adélie Penguin
abundance. Additionally, our results are consistent with
the hypothesis that offshore-foraging Adélie Penguins
and Chinstrap Penguins (Lynnes et al. 2002) may be
more negatively impacted by the AP’s rebounding
humpback whale population (Branch 2011) than in-
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Prate 1. Chinstrap Penguins (P. antarctica) nesting on the slopes of Baily Head, Deception Island. Photo credit: R. Naveen.

shore-foraging Gentoo Penguins. Although quantita-
tive, spatially resolved estimates of krill consumption
rates are lacking for both penguins and whales, efforts to
develop these data (e.g., by the Commission for the
Conservation of Antarctic Marine Living Resources’
Status and Trend Assessment of Predator Populations)
may allow such hypotheses to be tested.

We find significant evidence for increasing Gentoo
populations, particularly at the southern end of their
breeding range on the western AP. Our spatial analysis
of Gentoo Penguin breeding locations finds that Gentoo
breeding is restricted to areas with <50% November sea
ice coverage. This is particularly important in light of
declines in sea ice extent and concentration on the
western AP (Liu et al. 2004), as well as earlier retreat of
the pack ice in spring (Smith and Stammerjohn 2001,
Stammerjohn et al. 2008). Whereas previous analyses
have focused on constraints imposed by post-breeding
conditions, particularly extended parental care and its
effect on overwinter survival (Hinke et al. 2007, Polito
and Trivelpiece 2008), our finding that Gentoo popula-
tions are growing most quickly in areas with decreasing
November sea ice points to pre-breeding conditions as a
key constraint to Gentoo colony establishment and
recruitment. Unlike more highly colonial Adélie and
Chinstrap Penguins, Gentoo Penguins are excellent
colonizers of new breeding territory and quickly take
advantage of snow-free breeding space where conditions
are suitable (Bost and Jouventin 1990). Early studies

found that winter sea ice precluded Gentoo Penguins
from residing year-round in the waters adjacent to and
south of Petermann Island (Gain 1914); however, recent
satellite imagery suggests that, at least in some years,
considerable open water persists throughout the winter
(Appendix: Fig. A15), consistent with winter sightings of
Gentoo Penguins at Akademik Vernadsky Station
(65°15’ S, 64°16" W, 10 km south of Petermann Island).
Although future sea ice conditions in the vicinity of the
Antarctic Peninsula are difficult to predict (Stammer-
john et al. 2008), we expect continued declines in spring
sea ice to facilitate expansion of the Gentoo Penguin
breeding range south to the Berthelot Islands and
beyond.

These results, which illustrate the potential for
opportunistic surveys to detect regional patterns of
population change, paint the first regional-scale picture
of penguin population change on the AP and place
findings of more detailed, but geographically limited,
studies in a regional context. The three pygoscelid
penguin species have different life history traits that are
reflected in their varying responses to changing environ-
mental conditions and prey availability. Chinstrap
Penguin populations have declined on the AP since
1979/1980 despite a decrease in sea ice thought to be to
their benefit. The spatial pattern of Ad¢lie Penguin
decline highlights its strong association with regional
phytoplankton biomass and, by extension, with krill
stocks that have apparently declined over large areas of
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the AP, perhaps due to changing environmental
conditions (Atkinson et al. 2004) or a resurgence of
whales following cessation of intensive harvesting
(Ainley et al. 2007, Branch 2011, Trathan et al. 2012).
Gentoo Penguin populations are increasing most rapidly
at new colonies near their southern range limit, and their
expansion southward should continue as declining
spring sea ice makes more ice-free territory available
for colony establishment. Overall, these data reveal a
new dichotomy in population trends between the
pygoscelids that forage inshore vs. offshore (resident
and migratory, respectively) during the post-breeding
period.

Spatial variability complicates regional inference

Our spatially resolved analysis finds multiple exam-
ples of significant fine-scale spatial heterogeneity in
population trends. In the Anvers Island vicinity, Chin-
strap populations have been generally increasing at
Useful Island and in the Palmer Station vicinity, but
decreasing at Georges Point, the Orne Islands, and
Waterboat Point, the most distant of which are
separated by less than 80 km. Likewise, there seems to
be a breakpoint between Andresen Island and Pourquoi
Pas Island, north of which Adélie populations are
declining and south of which Adélie populations appear
to be increasing. Evidence of significant differences in
population dynamics over relatively small spatial scales
cautions against casual extrapolation of trend or its
apparent underlying mechanism from the study of a
single population. Further, our regional- and local-scale
spatially resolved analyses are not confounded by the
complex issue of flipper banding, thought to be
important in some population analyses, especially in
the context of environmental change (Saraux et al. 2011;
but see Boersma and Rebstock 2009). Our results clearly
demonstrate that characterizing landscape-scale ecolog-
ical changes requires spatially extensive abundance
monitoring to complement detailed studies of local
populations.

Our approach to data synthesis, applied here to
Antarctic seabirds, is broadly applicable to population
studies in which large spatial scale or logistical
constraints force regional-scale inference to be drawn
from aggregated and sometimes patchy time series. Here
we have provided a framework by which data of
opportunity can be synthesized in a meaningful analysis
of regional change within which detailed long-term data
sets may be contextualized.

Future directions

Our study was designed specifically to address the
spatial variability of pygoscelid penguin population
dynamics on the Antarctic Peninsula, which necessitated
the use of a relatively simple log-linear model. Although
our approach did account for measurement error (Eq.
1), it did not include process variability (Clark and
Bjgrnstad 2004), which has been shown in simulations of
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similar state-space models to increase the confidence
intervals for slope (Humbert et al. 2009). Additional
factors such as density dependence and spatial autocor-
relation in model residuals were also not considered,
because only the most complete time series in our data
set could support the estimation of these additional
model parameters. Nevertheless, the development of
these more complex state-space models remains a
priority for future research, particularly as continued
data collection expands the set of time series for which
such models are appropriate.

From the perspective of additional data collection,
site-wide census data for the largest penguin colonies are
a top priority. Such data not only will correct a bias in
the size distribution of monitored populations, but also
will be necessary to determine if population changes
(both interannual and long-term) of individual colonies
(e.g., Baily Head; see Appendix: Table AS5) reflect
changes at the scale of the entire breeding site. Satellite
imagery has been shown to provide reasonable popula-
tion estimates for penguins (Lynch et al. 2012) and will
be key to filling in census data for sites that, by virtue of
their size or location, are impossible to census regularly.
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SUPPLEMENTAL MATERIAL

Appendix

Additional details on data, model development, and analysis results (Ecological Archives E093-120-A1).
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