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Abstract
Vegetation maps are models of the real vegetation patterns and are considered im-
portant tools in conservation and management planning. Maps created through tra-
ditional methods can be expensive and time-consuming, thus, new more efficient 
approaches are needed. The prediction of vegetation patterns using machine learn-
ing shows promise, but many factors may impact on its performance. One important 
factor is the nature of the vegetation–environment relationship assessed and eco-
logical redundancy. We used two datasets with known ecological redundancy levels 
(strength of the vegetation–environment relationship) to evaluate the performance 
of four machine learning (ML) classifiers (classification trees, random forests, support 
vector machines, and nearest neighbor). These models used climatic and soil varia-
bles as environmental predictors with pretreatment of the datasets (principal compo-
nent analysis and feature selection) and involved three spatial scales. We show that 
the ML classifiers produced more reliable results in regions where the vegetation–
environment relationship is stronger as opposed to regions characterized by redun-
dant vegetation patterns. The pretreatment of datasets and reduction in prediction 
scale had a substantial influence on the predictive performance of the classifiers. The 
use of ML classifiers to create potential vegetation maps shows promise as a more 
efficient way of vegetation modeling. The difference in performance between areas 
with poorly versus well-structured vegetation–environment relationships shows that 
some level of understanding of the ecology of the target region is required prior to 
their application. Even in areas with poorly structured vegetation–environment rela-
tionships, it is possible to improve classifier performance by either pretreating the 
dataset or reducing the spatial scale of the predictions.
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1  | INTRODUC TION

Vegetation maps are simplified models of vegetation complexity 
carrying important messages about the position of vegetation types 
along environmental gradients. The utility of such maps extends be-
yond simple descriptions and audits of vegetation patterns (vegeta-
tion types and their complexes) within an area. For instance, they 
are indispensable tools in land-use and biodiversity conservation 
planning (Akasaka et al., 2014; Ferrier, 2002; Franklin, Woodcock, & 
Warbington, 2000) and serve as a major source of predictive mod-
eling in global-change research. Vegetation maps traditionally relied 
on extensive field surveys (e.g. Beard, 1975; Küchler & Zonneveld, 
1988), yet these can be prohibitively costly and time-consuming, 
especially when the area to be mapped is large and complex (Lee 
& Lunetta, 1996). Recent technological advances and remotely 
sensed data collection have changed the way in which vegetation 
maps are made and enhanced the definition of boundaries between 
mapped vegetation units at all spatial scales. New technologies also 
facilitate the production of large and complex spatial (geographical 
and biological) datasets that can support vegetation mapping (e.g. 
Farr et al., 2007; Hijmans, Cameron, Parra, Jones, & Jarvis, 2005; 
Viscarra Rossel et al., 2015). Modern vegetation science is also expe-
riencing a boost through the implementation of novel data-analytical 
approaches, enhancing our understanding of how the vegetation 
patterns formed and which environmental (or man-induced) drivers 
might underpin these patterns (Blois et al., 2013; Lippok et al., 2014; 
Reynolds, Packer, Bever, & Clay, 2003). The combination of techno-
logical advances and improved understanding allowed the develop-
ment of models to reconstruct past vegetation patterns or predict 
potential vegetation patterns within a region. Such models can sub-
stantially reduce the time and cost of constructing vegetation maps.

Machine learning (ML) algorithms have been shown to produce 
models that are accurate and robust (de Souza, Boerder, Matwin, & 
Worm, 2016; Dickson & Perry, 2016; Osis, Hettinga, & Ferber, 2016). 
In principle, a ML algorithm builds a solution (model) by examining a 
sample dataset and identifying features or trends. The model is then 
applied to an unexamined dataset to make predictions. While ML 
has been applied to examine a diverse range of problems (e.g. Pasolli, 
Truong, Malik, Waldron, & Segata, 2016; Shipp et al., 2002; Tango & 
Botta, 2013), there has been a recent increase in its use within the 
geospatial and ecological sciences. For instance, ML has been suc-
cessfully applied to predict species distribution (Liu, White, Newell, & 
Griffioen, 2013), land-use change (Tayyebi & Pijanowski, 2014), and 
hydrological regimes (Cross et al., 2015) and has also been applied to 
vegetation mapping across a range of spatial scales using a variety of 
algorithms (e.g. Bradter, Thom, Altringham, Kunin, & Benton, 2011; 
Munyati, Ratshibvumo, & Ogola, 2013; Pesch, Schmidt, Schroeder, 
& Weustermann, 2011; Zhang & Xie, 2013). When applied to vege-
tation mapping, ML algorithms (hereafter referred to as ML classifi-
ers) aim to create models that depict the relationships between the 
vegetation types identified within an area and environmental (e.g. 
climate, geology) or spectral reflectance variables. Although useful 
maps have been produced using these methods, the performance 

(measured in terms of output accuracy) varies with quality of the 
data and the scale of the classification. The impact of data quality 
and scale on accuracy has received much attention (Beekhuizen 
et al., 2014; Ghosh, Fassnacht, Joshi, & Koch, 2014), but the influ-
ence of ecological factors, specifically redundancy (see below), on 
the performance of ML classifiers has to our knowledge not been 
investigated to date. Given that vegetation classification success is 
essentially a function of the vegetation–environment relationship, it 
is critical that we gain a better understanding of how this relation-
ship impacts on the classification results.

The vegetation patterns and their dynamics are a result of inter-
action of plant species forming the vegetation cover with their envi-
ronment (Götzenberger et al., 2012). The presence of each species 
in these complex structures is determined by their life-history: a sum 
of functional traits that mediate the species response and the abi-
otic and biotic (interactions with other species) environment (Zobel, 
1992). Niche theory predicts that each species would have a unique 
position along environmental gradients. However, it fails to account 
that some vegetation types have many species that fulfill the same 
(or very similar) functional role within the plant communities (Kang 
et al., 2015) hence the functional role of those species in a plant 
community is considered redundant (Walker, 1992). This means that 
floristically distinct communities may occur in similar positions along 
ecological gradients in the landscape. In such highly redundant sys-
tems, many distinct plant communities can be recognized but the 
relationship of these communities to their environment is unclear. 
In contrast, low-redundancy systems (where few, if any, plants share 
responses to the factors of the ecological space) have a stronger 
ecological link with the environment.

In this study, we investigated the impact of the vegetation–envi-
ronment relationship (considered as a surrogate for redundancy) on 
the performance of four ML classifiers. The performance of the ML 
classification models was tested by predicting (modeling) vegeta-
tion in two contrasting vegetation landscapes of Western Australia, 
namely (a) eucalypt-dominated tropical savannah woodlands (char-
acterized by low redundancy) of the Northern Kimberley and (b) 
temperate kwongan scrub (characterized by high redundancy) of the 
Geraldton Sandplains. We also tested whether data pretreatment 
through feature extraction or feature selection would have any im-
pact on the model performance.

2  | METHODS

2.1 | Datasets

Two datasets representing the vegetation of contrasting regions in 
Western Australia (Mitchell Plateau and Geraldton Sandplains) were 
compiled and used as test cases. Each area was analyzed individually. 
Mitchell Plateau is part of the Northern Kimberley region (approx. 
14°44′S, 125°53′E) and covers approximately 480,000 ha. The size 
of the Mitchell Plateau, combined with the remoteness of the re-
gion and poor road infrastructure, prevents traditional field-focused 
mapping methods from being efficient. A total of 148 vegetation 
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plots (50 m × 50 m), listing all species and estimating their percent-
age cover, were sampled in this region. The plots were classified into 
plant communities by applying the Unweighted Pair Group Method 
with Arithmetic Mean (UPGMA) clustering on log-transformed data 
and similarity ratio as resemblance (see Mucina, Stephenson, Daniel, 
Van Niekerk, & Boonzaaier, 2013 for details). This classification 
yielded 20 floristically defined plant communities. Three communi-
ties were identified as being azonal and were consequently excluded 
from the modeling process. This dataset is referred to as Woodland.

Geraldton Sandplains are located 270 km north of Perth (approx. 
29°49′S, 115°16′E), and the region covers approximately 121,000 ha. 
The sandplains are part of one of the most diverse floristic regions 
of Western Australia, with more species diversity of sclerophyllous 
shrubs than anywhere else in the state (Lamont, Hopkins, & Hnatiuk, 
1982). A total of 542 vegetation plots (10 m × 10 m) were sampled 
in this area (Woodman Environmental Consulting, 2009). This data-
set, from now on referred to as the Kwongan dataset, was classified 
using Beta Flexible Clustering (beta = −0.25) based on Bray–Curtis 
dissimilarity, with no prior data transformation applied. This classifi-
cation (Tsakalos, Dršková, Hruban, Mucina, & Dobrowolski, 2014; J. 
Tsakalos, unpublished data) identified 24 distinct plant communities.

For both regions, rare vegetation classes were merged with their 
most similar class(es) at the plant community classification (called Level 
A) scale to ensure a minimum representation of five samples. This re-
sulted in a reduction of the number of classes in the Woodland dataset 
from 17 to nine, and in the Kwongan dataset from 24 to 14. The clas-
sifier comparisons were also conducted at two broader classification 
scales created by grouping the Level A classes to form a group of plant 
communities called Level B, and then further by grouping the Level 
B classes into a high-order group called Level C, to examine whether 
redundancy changes with classification scale. At the Level B scale, the 
Woodland dataset contained four classes, while the Kwongan dataset 
had six classes. Both datasets contained two classes at the Level C scale.

2.2 | Predictor variables

The predictors used as input to the ML classifiers (Supporting 
Information Table S1) were similar for the two regions and con-
sisted of 67 climatic variables from the BioClim database (Hijmans 
et al., 2005) and 12 terrain-based layers created using the SAGA-
GIS v2.1.2 basic terrain analysis tool. The terrain variables were 
derived from the 1-ARC second Shuttle Radar Topography 
Mission (SRTM) digital elevation model (DEM) (Farr et al., 2007). In 
Kwongan vegetation, 23 in situ sampled soil variables were consid-
ered. Because no soil samples were taken in the Woodland vegeta-
tion, 10 variables from the 1:150,000 (90 m resolution) National 
Soil Grid of Australia (Viscarra Rossel et al., 2015) were used in-
stead. None of the vegetation plots occurred within the same cell.

2.3 | Data treatment

Three different predicting datasets were assessed in this study: 
(a) the full dataset (FD) containing all predicting variables for each 

region; (b) a dataset containing variables derived from a feature 
extraction (FE) process, and (c) a dataset containing variables from 
a feature selection (FS) process. FE involves the construction of a 
new (smaller) feature set derived from the full dataset (Hira & Gillies, 
2015). In this study, this dataset was constructed using the principle 
component analysis (PCA) tool within ArcMap v10.3. The first five 
principal components (PCs), which explained more than 95% of the 
variation in the data, were retained at all scales for both regions. FS is 
the process of discarding unimportant variables. The FS dataset was 
created using the random forest (RF) tool within Salford Predictive 
Modeller v8.0. A proportion (40%) of the sample data was used for 
(out-of-bag) accuracy assessment. The process started with the full 
set of variables, after which the importance of each variable was 
assessed. Subsequent models were then created by excluding less 
important variables. This process continued until the accuracy of the 
model could not be improved.

2.4 | Quantification of ecological redundancy

Ecological redundancy depends on the strength of the vegetation–
environment relationship. It can be approximated by examining the 
environmental variables and the quantification of their relationships 
using Canonical Correlation Analysis (CCA), followed by a Monte 
Carlo permutation test as implemented in CANOCO v.4.5 (Lepš & 
Šmilauer, 2003). CCA is a form of constrained ordination involving 
two matrices: one describing the species co-occurrence in plots, 
and one comprising environmental variables for the same plots. The 
latter matrix constrains the ordination of plots sharing species. A 
Monte Carlo permutation test examines the null hypothesis that the 
species composition (of communities) is independent of the environ-
mental factors. During the permutations (9,999 runs), the environ-
mental variables were randomly assigned among plots, and then new 
CCA analyses were performed and assessed whether random envi-
ronmental data might produce equal or better ordination structure 
than the ordination of the real data. An F-value was generated after 
all permutations. If the F-value exceeded 0.05, the null hypothesis 
was accepted.

2.5 | Machine learning classifiers

Four ML classifiers, namely classification tree (CT), RF, support vec-
tor machine (SVM), and nearest neighbor (NN), were tested in this 
study.

CT was selected owing to its nonparametric nature, ease of inter-
pretability, ability to handle multiple data types, and speed of predic-
tion. CT proceeds through a process of recursive partitioning, which 
splits the training data into a series of nodes based on increases in 
homogeneity of the subsequent groups (Breiman, Friedman, Stone, 
& Olshen, 1984). The result of this process is a tree composed of 
nodes and terminal leaves that can easily be converted into a simple 
set of if-then rules. CT outputs are easy to interpret because the 
resulting tree can be scrutinized to understand why a given output 
was generated (Chen, Wang, & Zhang, 2011). However, these trees 
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can suffer from overfitting if allowed to grow fully without pruning 
(Schaffer, 1993).

Random forest is an ensemble CT classifier (Breiman, 2001; 
Chen et al., 2011). The principle of ensemble classifiers is that a 
large collection of weaker classifiers (individual CTs in this case) 
can be used to create a strong classifier. RF involves the construc-
tion of large number of individual trees from the training data 
(Rodriguez-Galiano, Ghimire, Rogan, Chica-Olmo, & Rigol-Sanchez, 
2012). How the trees are constructed differs from CT in that a 
random selection of training data is used for each tree so that each 
tree is trained on a different set of data. Unlike CT which considers 
all predictor variables at each node, RF selects a random subset of 
predictors and these are used to identify the best split pattern. A 
collection of these trees is the forest where each tree is a unique 
classification in terms of a random selection of predicting variables 
and the resulting splitting pattern leading to definition of classes. 
Once all trees have been constructed, the objects of the studied 
dataset are presented to each tree in the forest, which then pre-
dicts the class to which the object would belong to. The class that 
was predicted the most frequently is assigned to the unclassified 
data through a measure of a majority vote. The trees in RF are 
not pruned as the collection of all trees reduces the likelihood of 
overfitting. Because of its stochastic nature, RF is also relatively 
insensitive to noise and outliers (Breiman, 2001). However, the 
classification accuracy of RF is at a trade-off with interpretability 
(Zhang & Wang, 2009).

SVM classifiers are widely used in land cover classification 
studies (Duro, Franklin, & Dubé, 2012; Zhang & Xie, 2013). SVM 
operates by identifying a hyperplane that separates the samples 
of two classes in a variable-defined space. Finding the optimal hy-
perplane is challenging, because there are numerous planes that 
could separate the training classes (Cracknell & Reading, 2014). 
SVM addresses this by identifying training samples (support vec-
tors) at the transition between two classes and identifies a plane 
that aligns with them. The optimal hyperplane is then identified 
equidistant between these support vectors (Pal & Foody, 2010). 
Kernels are often used to transform the feature space to improve 
the fitting of hyperplanes. SVMs have shown capacity for pro-
ducing reliable classifications even when relatively few training 
samples are used (Mountrakis, Im, & Ogole, 2011). SVMs are also 
relatively insensitive to the effects of high dimensionality, which 
is beneficial when dealing with a large set of predictors (Gualtieri, 
2009).

NN sorts training samples according to their similarity (dis-
tance in a feature space) to each other (Bhatia, 2010). The dis-
tances between the training data can be determined using some 
metrics, Euclidean distance being the most commonly applied. 
When data that have not been classified are presented to the clas-
sifier, the distance of an unknown sample is calculated to each of 
the neighboring training samples and the label (class) of the clos-
est training sample is assigned to the unknown data. Unlike many 
other classifiers, NN retains all training samples during the classi-
fication process which can reduce efficiency when the size of the 

training set is large or when a high number of predictor variables 
is considered.

2.6 | Comparison of ML classifiers

The performance of the selected ML classifiers was tested using 
custom software created by Myburgh and Van Niekerk (2013) 
based on the GDAL (GDAL Development Team, 2010), OpenCV 
(Bradski, 2000), and LibSVM (Chang & Lin, 2011) libraries. This 
software uses a 60/40 split in the observation data to create 
training and validation datasets, respectively, requiring a mini-
mum of five samples per class (three for training and two for vali-
dation). Confusion matrices, which use the validation dataset to 
determine which samples had their class correctly or incorrectly 
predicted, were created for each model yielding the overall ac-
curacy (OA) and Kappa (K) values. All datasets were iterated 30 
times to reduce the influence of the random selection of training 
data.

2.7 | Statistical analyses

A range of nonparametric statistical tests are recommended for 
comparing the performance of ML classifiers (see e.g. Garcia & 
Herrera, 2008). In this study, we chose the aligned rank trans-
form (ART; Wobbrock, Findlater, Gergle, & Higgins, 2011) to 
perform a nonparametric factorial analysis (using ANOVA proce-
dures) and multiple comparisons when significance is detected. 
This analysis was performed using ARTool (Kay & Wobbrock, 
2016). The testInteractions function, which is part of the Phia 
module, was used for carrying out the comparisons (Rosario-
Martinez, 2015). The Holm method for p-value adjustment was 
used as recommended.

3  | RESULTS

The results are summarized by classifier and scale of analysis (Levels) 
in Figure 1. Examples of the differences in predicted patterns at the 
finest scale (Level A) for each region are presented in Supporting 
Information Figures S1 and S2. A summary table of mean accuracy 
is shown in Supporting Information Table S3, while matrices show-
ing the results of all pairwise comparisons for each region/scale are 
presented in Supporting Information Appendix S1.

3.1 | Ecological redundancy patterns in the 
contrasting datasets

On purely statistical grounds, CCA analysis (and associated 
Monte Carlo permutations) showed that the vegetation pattern-
ing of the Woodland vegetation are well explained by the se-
lected environmental variables (F-value = 0.0195), while with the 
Kwongan vegetation, this was not the case (F-value = 0.0520). 
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In terms of ecological redundancy, we suggest that the detected 
vegetation–environment relationship in the Woodland is a sign of 
low (if any) ecological redundancy, while Kwongan is ecologically 
redundant.

3.2 | Feature selection

While not all models showed improvements in accuracy (see 
Supporting Information Table S2), it was possible to reduce the 
number of predictors in all cases. This dataset contained a reduced 
number of 15, eight, and seven predictors for Levels A, B, and C, 
respectively, in Kwongan and 16, 13, and 10 for Levels A, B, and 
C, respectively, in Woodland. The FS dataset for Kwongan mainly 
comprised soil and topographic variables, while the Woodland FS 
dataset included some climatic, in addition to soil and topographic, 
variables.

3.3 | Classifier performance

The results show that each factor (scale, region, treatment, and clas-
sifier) had a significant effect on prediction accuracy with the inter-
actions between these factors also showing significance. The two 
vegetation datasets used are significantly different overall (and at 
each scale), with predictions in the Woodland vegetation deemed 
more accurate. The results, at each scale of analysis, are conse-
quently outlined separately for each region below. Unless other-
wise specified, all significant differences were found at the level of 
p < 0.001.

3.4 | Kwongan dataset

3.4.1 | Level A

When the full dataset was used as input to the classifiers at Level 
A in the Kwongan, the accuracies of all classifiers were significantly 
different from each other, with RF (41%) and NN (22%) providing 
the best and worst accuracies, respectively. With the FS dataset, RF 
(42%) also outperformed the other classifiers with NN (25%) again 
producing the weakest models. With the FE dataset, two groups of 
classifiers were found, with SVM (35%) and RF (32%) returning sig-
nificantly higher accuracies than CT (23%) and NN (24%). Response 
to pretreatment varied from making no significant difference—when 
either FS or FE was applied to SVM (35% each time) and NN (22%–
25%), and when FS was applied to RF (41% vs. 42%) and CT (27% vs. 
29%)—to significantly reducing classifier performance—when FE was 
applied to RF (32% vs. 41%) and CT (23% vs. 27%). Overall, the RF 
classifier, combined with the full and FS datasets, provided the best 
performance (41%, 42%) at Level A in the Kwongan dataset.

3.4.2 | Level B

The experiments carried out at Level B in the Kwongan showed that 
all classifiers produced significantly different accuracies when the full 
dataset was used as input. As at Level A, RF generated the strong-
est models (60%), while the NN classifier performed relatively poorly 
(34%). With both the FE and FS datasets, the classifiers formed two 
distinct groups with RF (FE: 52%, FS: 58%) and SVM (FE: 51%, FS: 

F IGURE  1 Boxplots showing classifier response to data treatment in Kwongan and Woodland at Levels (a, b, and c). The plots in section 
(d) represent the overall accuracy. Key: Green = FD dataset; Red = FE dataset; Blue = FS dataset; NN = nearest neighbor; CT = classification 
tree; SVM = support vector machine; RF = random forests
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56%) forming a group with higher accuracy than CT (FE: 42%, FS: 
50%) and NN (FE: 40%, FS: 47%). Pretreatment did not make a differ-
ence to the performance of the CT or SVM classifiers. The accuracies 
of the NN classifications were significantly different among datasets, 
with FE and FS significantly improving (by 6% and 13%, respectively) 
performance. Overall, three classifier dataset combinations provided 
the best predictive accuracy, namely RF using the FD (60%) or FS 
(58%) datasets, and SVM using the FS dataset (56%). Compared to 
Level A, all classifiers performed better at Level B.

3.4.3 | Level C

Using the full dataset as input at Level C, NN produced significantly 
lower accuracies (15%–20%) compared to the other classifiers, while 
the differences between SVM, CT, and RF were marginal. FS had no 
significant impact on RF and CT, while FE reduced the accuracies of 
these classifiers substantially (7% and 6%, respectively). NN benefit-
ted (FE: 9%, FS: 15%) the most from the pretreatments, but had no 
impact on SVM performance. Overall, the highest accuracies were 
achieved when the FS dataset was used as input to RF (85%) and 
SVM (84%).

3.5 | Woodland dataset

3.5.1 | Level A

Using the full dataset as the input at Level A, RF returned the high-
est accuracy (50%) with SVM (20%) and NN (13%) producing the 
weakest models. When the FE dataset was considered, two groups 
with notably different accuracy statistics were noted. RF (45%) 
and SVM (48%) formed a group with significantly higher accura-
cies than CT (39%) and NN (39%), while no significant differences 
among classifiers within each group were noted. With the FS data-
set, it was found that CT returned the lowest accuracy (42%), while 
the results of RF (52%), SVM (50%), and NN (49%) were on par with 
one another.

The treatments resulted in significant improvements to the accu-
racies of SVM (FE: 48%, FS: 50%) and NN (FE: 39%, FS: 49%), but had 
no effect on CT. The FS dataset had no effect on the performance 
of RF, but FE significantly reduced its accuracy (by 5%). Overall, the 
full dataset using the RF classifier (50%)—or the FS dataset using RF 
(52%), SVM (50%) or NN (49%)—performed the best at Level A in the 
Woodland.

3.5.2 | Level B

Using the full Woodland dataset as input at Level B, all classifi-
ers returned statistically different accuracies, with RF (76%) per-
forming the best and NN (31%) generating the weakest models. 
Pretreating the full dataset made significant improvements to the 
performance of CT (FE: 69%, FS: 69%), SVM (FE: 73%, FS: 75%), 
and NN (FE: 66%, FS: 72%), but had no effect on RF. Overall, the 
RF classifier consistently (using any of the datasets) outperformed 

the other classifiers (74%–77%), while the SVM classifier produced 
similar results when the FE (73%) or FS (75%) datasets were used 
as input.

3.5.3 | Level C

At Level C, RF (85%) and CT (81%) outperformed the other classifiers 
when the full dataset was used as input. NN (30%) returned the low-
est accuracy. Pretreating the dataset had no effect on the accuracy 
of CT and RF, but significantly improved the performance of both 
SVM (FE: 84%, FS: 87%) and NN (FE: 82%, FS: 82%). Overall, the 
highest performance was obtained using the FE or FS datasets with 
either SVM (FE: 84%, FS: 87%) or RF (FE: 83%, FS: 84%).

In general, the Kappa values resulting from the experiments 
agree with the overall accuracies. However, some interesting dif-
ferences were noted. For example, when the full dataset was used 
as input in Woodland, the Kappa values of SVM (0.02–0.08) and NN 
(0.005–0.03) were very low, which indicates that the models pro-
duced accuracies that are similar to what one would expect from 
random class assignment. While accuracy increased at Levels B and 
C, these classifiers were unable to return Kappa values of above 
0.08 (on average) when the full dataset was used as input. However, 
the application of FE and FS resulted in substantial increases in re-
liability. For example, at Level A, the average Kappa for the SVM 
classifier increased by 0.34 (FE) and 0.23 (FS), while for NN, it in-
creased by 0.26 (FE) and 0.21 (FS). These increases became more 
pronounced as the scale was reduced. For instance, in the case of 
SVM, accuracies increased by 45% from Levels A to C and 13% from 
Level B to C.

4  | DISCUSSION

The results of this study show that the vegetation of the Kwongan 
is ecologically redundant. The hypothesis that such redundancy 
reduces the power of ML classifiers in predicting vegetation pat-
terns is supported by the observations that the accuracies of the 
Kwongan classifications—especially at Levels A and B—were consist-
ently lower compared to those of Woodland. It is well known that 
classifiers behave differently under conditions of data redundancy, 
however, given that the same number of features was used as input 
and given that the same dimensionality reduction methods were 
employed in both study areas, the differences in accuracy are most 
likely due to inherent redundancies in the environmental variables 
used. The significant difference in classifier performance between 
the regions shows that—based on the ecological relationships of the 
regions—we can predict the vegetation patterns of the nonredun-
dant Woodland vegetation with greater confidence than those of 
the Kwongan. Although other factors may also have contributed to 
the differences in accuracy—for example, the classification schemes 
(the woodland vegetation types are better defined) and the differ-
ences in data sources (ground collected soil vs. the interpolated soil 
data)—the results offer evidence that ecological redundancy must 
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have been a major driver. While different resemblance and cluster-
ing methods can change the final classification, the resulting regional 
systems used in this study were selected through a comparison and 
validation process (e.g. Tichý, Chytrý, Hájek, Talbot, & Botta-Dukát, 
2010). While different combinations were used in each region, they 
represent the best systems for each type.

The finding that higher accuracies were obtained when the com-
plexity was reduced (by carrying out the experiments at coarser 
scales) was expected, but the way in which the classifiers responded 
to the FE and FS data treatments provided new insights into the im-
pact of ecological redundancy on ML classifications. Both FE and FS 
have been found in many studies (Babaoğlu, Fındık, & Bayrak, 2010; 
Chandrashekar & Sahin, 2014; Howley, Madden, O’Connell, & Ryder, 
2006) to improve classification accuracy, and it was therefore expected 
that predictions following these methods would be more accurate 
than predictions made on the full dataset. However, in the ecologically 
redundant Kwongan, these methods led to statistically significant clas-
sification improvements in only three scenarios, whereas in the nonre-
dundant Woodland, they improved accuracies 12 times. Furthermore, 
the use of FE in the Kwongan was found to significantly reduce the 
performance of the classifiers four times. These findings can be ex-
plained within the context of the relationship each vegetation type 
has with the environment. The vegetation–environment relationship 
has little structure where redundancy is present and data treatments—
designed to capture the variability (FE) of the environment or reduce 
uninformative variables (FS)—thus have little effect. An unexpected 
result was that the tree-based classifiers (CT and RF) showed little re-
sponse to both FE and FS in both regions. For FE, this is likely a result 
of the way that these classifiers create their predictions, with the re-
cursive partitioning possibly not as strong using the transformed data.

RF unresponsiveness to FS is attributed to its use of a randomly 
selected subset of features during model building. Feature selection 
is consequently inherent in the algorithm. Although some studies (e.g. 
Gilbertson & Van Niekerk, 2017) have shown that RF classification ac-
curacies can be improved using FS pretreatments, it was not the case 
with our data. For both regions and all classifiers, where a difference 
between the treatments was found in all cases FS was found to be 
significantly more accurate. Difference in response between the two 
treatments was more common in the Kwongan than in Woodland, 
suggesting that in conditions of redundancy, FS is more beneficial 
(or at least not detrimental) to classification accuracy compared to 
FE. We suggest that this is due to the creation of the PCs in the FE 
process. In this process, the input features (environmental variables) 
which show the greatest variation are considered (reasonably) to be 
more important in the construction of the new feature set (Shlens, 
2014). It is important that, this process is conducted independently of 
the prediction targets (vegetation classes). This is, in contrast to the 
FS process in which the feature set, examined against our classes to 
determine which are the most informative in separating the classes. 
Given the ecological redundancy of the Kwongan, it is possible that 
the FE process downplayed the importance of those features which 
better separate the classes.

In each region, the RF and SVM classifiers consistently outper-
formed the other classifiers. This is consistent with the results of 
other studies (Duro et al., 2012; Pal, 2005; Roli & Fumera, 2001), 
where it was found that RF and SVM were more successful, espe-
cially under complex conditions. One can argue that, in this study, 
ecological redundancy contributed to complexity and that it offers 
an explanation why these classifiers performed better than NN and 
DT.

The use of ML classifiers to create robust maps of vegetation 
patterns is becoming more popular. However, the influence of eco-
logical features on these classifiers is still poorly understood. The 
results of this study show that, although ecological complexity 
(i.e. redundancy) has a negative effect on classifier performance, 
it is not the only factor that contributed to overall performance of 
classifiers. The unexpectedly poor performance of NN and SVM 
in the Woodland suggests that the number and quality of train-
ing samples may have affected (through the addition of noise) the 
classifications. The finding that both FE and FS improved the per-
formance of these classifiers in this region provides some support 
for this notion.

This study focussed on the application of ML to produce potential 
vegetation maps and as such purposefully omitted additional sources 
of information (such as satellite reflectance data) as this would have 
restricted the predictions to extant vegetation. However, it would be 
beneficial to examine what effect the inclusion of these datasets (ei-
ther in addition to the environmental data or as sole predictors) may 
have on improving modeling accuracies. It is clear that more work is 
needed to find cost-efficient and accurate methods for generating 
vegetation maps over large and complex areas.
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