
6
Multiple Linear Regression

In Section 4.1 we have seen how to model the relationship between two variables
using simple linear regression (SLR). However, in ecosystems, the relationship
between the response variable and the explanatory variables is more complex and
in many cases cannot be adequately captured by a single driver (i.e. influential or
predictor variable). In such cases, multiple linear regression (MLR) can be used
to model the relationship between the response variable and multiple explanatory
variables.

6.1 multiple linear regression

Multiple linear regression helps us answer questions such as:
• How do various environmental factors influence the population size of a species?
Factors like average temperature, precipitation levels, and habitat area can be
used to predict the population size of a species in a given region. Which of these
factors are most important in determining the population size?

• What are the determinants of plant growth in different ecosystems?Variables such
as soil nutrient content, water availability, and light exposure can help predict
the growth rate of plants in various ecosystems. How do these factors interact to
influence plant growth?

• How do genetic and environmental factors affect the spread of a disease in a
population? The incidence of a disease might depend on factors like genetic sus-
ceptibility, exposure to pathogens, and environmental conditions (e.g., humidity
and temperature). What is the relative importance of these factors in determining
the spread of the disease?
Multiple linear regression extends the simple linear regression model to include

several independent variables. The model is expressed as:

𝑌𝑖 = 𝛼 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 +…+ 𝛽𝑘𝑋𝑖𝑘 + 𝜖𝑖 (1)

Where:
• 𝑌𝑖 is the response variable for the 𝑖-th observation,
• 𝑋𝑖1, 𝑋𝑖2,… , 𝑋𝑖𝑘 are the 𝑘 predictor variables for the 𝑖-th observation,
• 𝛼 is the intercept,
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• 𝛽1, 𝛽2,… , 𝛽𝑘 are the coefficients for the 𝑘 predictor variables, and
• 𝜖𝑖 is the error term for the 𝑖-th observation (the residuals).

When including a categorical variable in a multiple linear regression model,
dummy (indicator) variables are used to represent the different levels of the categor-
ical variable. Let’s assume we have a categorical variable 𝐶 with three levels: 𝐶1, 𝐶2,
and 𝐶3. We can represent this categorical variable using two dummy variables:
• 𝐷1: Equals 1 if 𝐶 = 𝐶2, 0 otherwise.
• 𝐷2: Equals 1 if 𝐶 = 𝐶3, 0 otherwise.𝐶1 is considered the reference category and does not get a dummy variable.
This way, we avoid multicollinearity (see Section 6.6.4). R’s lm() function will
automatically convert the categorical variables to dummy variables (sometimes
called treatment coding). The first level of the alphabetically sorted categorical
variable is taken as the reference level. See Section 9.5 for more information about
how to include categorical variables in a multiple linear regression model. At the
end of the chapter you’ll find alternative ways to assess categorical variables in a
multiple linear regression model (Section 6.9).

Assume we also have 𝑘 continuous predictors 𝑋1, 𝑋2,… , 𝑋𝑘. The multiple linear
regression model with these predictors and the categorical variable can be expressed
as: 𝑌𝑖 = 𝛼 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 +…+ 𝛽𝑘𝑋𝑖𝑘 + 𝛾1𝐷𝑖1 + 𝛾2𝐷𝑖2 + 𝜖𝑖 (2)

Where:
• 𝑌𝑖 is the dependent variable for observation 𝑖.
• 𝛼 is the intercept term.
• 𝛽1, 𝛽2,… , 𝛽𝑘 are the coefficients for the continuous independent variables𝑋𝑖1, 𝑋𝑖2,… , 𝑋𝑖𝑘.
• 𝐷𝑖1 and 𝐷𝑖2 are the dummy variables for the categorical predictor 𝐶.
• 𝛾1 and 𝛾2 are the coefficients for the dummy variables, representing the effect of
levels 𝐶2 and 𝐶3 relative to the reference level 𝐶1.

• 𝜖𝑖 is the error term for observation 𝑖.
6.2 nature of the data

You are referred to the discussion in simple linear regression (Section 4.1). The only
added consideration is that the data should be multivariate, i.e., it should contain
more than one predictor variable. The predictor variables are generally continuous,
but there may also be categorical variables.

6.3 assumptions

Basically, this is as already discussed in simple linear regression (Section 4.1)—in
multiple linear regression, the same assumptions apply to the response relative to
each of the predictor variables. In Section 6.6.7 I will assess the assumptions in an
example dataset. An additional consideration is that the predictors must not be
highly correlated with each other (multicollinearity) (see Section 6.6.4).
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6.4 outliers

Again, this is as discussed in simple linear regression (Section 4.1). In multiple linear
regression, the same considerations apply to the response relative to each of the
predictor variables.

6.5 r function

The lm() function in R is used to fit a multiple linear regression model. The syntax
is similar to that of the lm() function used for simple linear regression, but with
multiple predictor variables. The function takes the basic form:

lm(formula, data)

For a multiple linear regression with only continuous predictor variables (as in
Equation 1), the formula is:

lm(response ~ predictor1 + predictor2 + ..... + predictorN,
data = dataset)

Interaction effects are implemented by including the product of two variables
in the formula. For example, to include an interaction between predictor1 and
predictor2, we can use:

lm(response ~ predictor1 * predictor2, data = dataset)

When we have both continuous and categorical predictor variables (Equation 2),
the formula is:

lm(response ~ continuous_predictor1 + continuous_predictor2 + .....
+ continuous_predictorN + factor(categorical_predictor1) +
factor(categorical_predictor2) + .....

+ factor(categorical_predictorM),
data = dataset)

6.6 example 1: the seaweed dataset

Load some data produced in the analysis by [3]. Please refer to the chapter Deep
Dive into Gradients on Tangled Bank for the data description.

This dataset is suitable for a multiple linear regression because it has continuous
response variables (𝛽sør, 𝛽sim, and 𝛽sne, the Sørenesen dissimilarity, the turnover
component of 𝛽-diversity, and the nestedness-resultant component of 𝛽-diversity,
respectively), continuous predictor variables (the mean climatological temperature
for August, the mean climatological temperature for the year, the temperature range
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for February and August, and the SD of February and August), and a categorical
variable (the bioregional classification of the samples).

sw <- read.csv("data/spp_df2.csv")
rbind(head(sw, 3), tail(sw, 3))[,-1]
> dist bio augMean febRange febSD augSD annMean
> 1 0.000 BMP 0.00000000 0.00000000 0.00000000 0.0000000 0.00000000
> 2 51.138 BMP 0.05741369 0.09884404 0.16295271 0.3132800 0.01501846
> 3 104.443 BMP 0.15043904 0.34887754 0.09934163 0.4188239 0.02602247
> 968 102.649 ECTZ 0.41496099 0.11330069 0.24304493 0.7538546 0.52278161
> 969 49.912 ECTZ 0.17194242 0.05756093 0.18196664 0.3604341 0.24445006
> 970 0.000 ECTZ 0.00000000 0.00000000 0.00000000 0.0000000 0.00000000
> Y Y1 Y2
> 1 0.000000000 0.0000000 0.000000000
> 2 0.003610108 0.0000000 0.003610108
> 3 0.003610108 0.0000000 0.003610108
> 968 0.198728140 0.1948882 0.003839961
> 969 0.069337442 0.0443038 0.025033645
> 970 0.000000000 0.0000000 0.000000000

Wewill do amultiple linear regression analysis to understand the relationship be-
tween some of the environmental variables and the seaweed species. Specifically, we
will consider only the variables augMean, febRange, febSD, augSD, and annMean
as predictors of the species composition as measured by 𝛽sør (Y in the data file).

The model, which we will call full_mod1 below, can be stated formally as
Equation 3: 𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5 + 𝜖 (3)

Where:
• 𝑌 is the response variable, the mean Sørensen dissimilarity,
• the predictors 𝑋1, 𝑋2, 𝑋3, 𝑋4, and 𝑋5 correspond to augMean, febRange, febSD,
augSD, and annMean, respectively, and

• 𝜖 is the error term.
But before we jump into multiple linear regression, let’s warm up by first fitting

some simple linear regressions.

6.6.1 Simple Linear Models

For interest sake, let’s fit simple linear models for each of the predictors against the
response variable. Let’s look at relationships between the continuous predictors and
the response in the East Coast Transition Zone (ECTZ), ignoring the other bioregions
for now. We will first fit the simple linear models and then create scatter plots of the
response variable 𝛽sør against each of the predictor variables. To these plots, we will
add a best fit (regression) lines.
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sw_ectz <- sw ||> filter(bio === "ECTZ")

predictors <- c("augMean", "febRange", "febSD", "augSD", "annMean")

# Fit models using purrr:::map and store in a list
models <- map(predictors, ~ lm(as.formula(paste("Y ~", .x)),

data = sw_ectz))

names(models) <- predictors

model_summaries <- map(models, summary)
model_summaries
> $augMean
>
> Call:
> lm(formula = as.formula(paste("Y ~", .x)), data = sw_ectz)
>
> Residuals:
> Min 1Q Median 3Q Max
> -0.180961 -0.059317 -0.008346 0.045695 0.192444
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
> (Intercept) 0.060104 0.007359 8.168 1.01e-14 *﯂﯂﯂
> augMean 0.346011 0.010899 31.748 < 2e-16 *﯂﯂﯂
> ---
> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Residual standard error: 0.07721 on 287 degrees of freedom
> Multiple R-squared: 0.7784, Adjusted R-squared: 0.7776
> F-statistic: 1008 on 1 and 287 DF, p-value: < 2.2e-16
>
>
> $febRange
>
> Call:
> lm(formula = as.formula(paste("Y ~", .x)), data = sw_ectz)
>
> Residuals:
> Min 1Q Median 3Q Max
> -0.21744 -0.08311 -0.01543 0.07536 0.25699
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
> (Intercept) 0.092722 0.009638 9.621 <2e-16 *﯂﯂﯂
> febRange 0.181546 0.008897 20.405 <2e-16 *﯂﯂﯂
> ---
> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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>
> Residual standard error: 0.1048 on 287 degrees of freedom
> Multiple R-squared: 0.592, Adjusted R-squared: 0.5905
> F-statistic: 416.4 on 1 and 287 DF, p-value: < 2.2e-16
>
>
> $febSD
>
> Call:
> lm(formula = as.formula(paste("Y ~", .x)), data = sw_ectz)
>
> Residuals:
> Min 1Q Median 3Q Max
> -0.24267 -0.10709 -0.02587 0.08888 0.39171
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
> (Intercept) 0.12018 0.01168 10.29 <2e-16 *﯂﯂﯂
> febSD 0.17166 0.01245 13.79 <2e-16 *﯂﯂﯂
> ---
> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Residual standard error: 0.1272 on 287 degrees of freedom
> Multiple R-squared: 0.3985, Adjusted R-squared: 0.3964
> F-statistic: 190.1 on 1 and 287 DF, p-value: < 2.2e-16
>
>
> $augSD
>
> Call:
> lm(formula = as.formula(paste("Y ~", .x)), data = sw_ectz)
>
> Residuals:
> Min 1Q Median 3Q Max
> -0.307683 -0.111051 -0.003922 0.086322 0.308041
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
> (Intercept) 0.12781 0.01231 10.38 <2e-16 *﯂﯂﯂
> augSD 0.08793 0.00720 12.21 <2e-16 *﯂﯂﯂
> ---
> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Residual standard error: 0.133 on 287 degrees of freedom
> Multiple R-squared: 0.3419, Adjusted R-squared: 0.3396
> F-statistic: 149.1 on 1 and 287 DF, p-value: < 2.2e-16
>
>
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> $annMean
>
> Call:
> lm(formula = as.formula(paste("Y ~", .x)), data = sw_ectz)
>
> Residuals:
> Min 1Q Median 3Q Max
> -0.144251 -0.051607 -0.005023 0.045095 0.145173
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
> (Intercept) 0.053883 0.006309 8.541 7.94e-16 *﯂﯂﯂
> annMean 0.332150 0.008667 38.325 < 2e-16 *﯂﯂﯂
> ---
> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Residual standard error: 0.0663 on 287 degrees of freedom
> Multiple R-squared: 0.8365, Adjusted R-squared: 0.836
> F-statistic: 1469 on 1 and 287 DF, p-value: < 2.2e-16

The individual models show that, for each predictor, the estimate of the coeffi-
cients (for slope) and the test for the overall hypothesis are both significant (𝑝 < 0.05
in all cases; refer to the model output). All the predictor variables are therefore good
predictors of the structure of seaweed species composition along.

# Create individual plots for each predictor
plts1 <- map(predictors, function(predictor) {

ggplot(sw_ectz, aes_string(x = predictor, y = "Y")) +
geom_point(shape = 1, colour = "dodgerblue4") +
geom_smooth(method = "lm", col = "magenta", fill = "pink") +
labs(title = paste("Y vs", predictor),

x = predictor,
y = "Y") +

theme_bw()
})

# Name the list elements for easy reference
names(plts1) <- predictors

ggpubr:::ggarrange(plotlist = plts1, ncol = 2,
nrow = 3, labels = "AUTO")

Figure 6.1 is a series of scatter plots showing the relationship between the re-
sponse variable 𝛽sør and each of the predictor variables. The blue line represents
the linear regression fitted to the data. We see that the relationship between the re-
sponse variable and each of the predictors is positive and linear. Each of the models
are significant, as indicated by the 𝑝-values in the model summaries. These sim-
ple models do not tell us how some predictors might act together to influence the
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Figure 6.1. Individual simple linear regressions fitted to the variables augMean,
febRange, febSD, augSD, and annMean as predictors of the seaweed species com-
position as measured by the Sørensen dissimilarity, Y.

response variable.
To consider combined effects and interactions between predictor variables, we

must explore multiple linear regression models that include all the predictors. Mul-
tiple regression will give us a more integrated understanding of how various en-
vironmental variables jointly influence species composition along the coast. In
doing so, we can control for confounding variables, improve model fit, deal with
multicollinearity, test for interaction effects, and enhance predictive power.

We will fit this multiple regression model next.

6.6.2 State the Hypotheses for a Multiple Linear Regression

Aswith all inferential statistics, we need to consider the hypotheseswhen performing
multiple linear regression.

The null hypothesis (𝐻0) states that there is no significant relationship between
the Sørensen diversity index and any of the the climatological variables entered
into the model, implying that the coefficients for all predictors are equal to zero.
The alternative hypothesis (𝐻𝐴), on the other hand, states that there is a significant
relationship between the Sørensen diversity index and the climatological variables,
positing that at least one of the coefficients is not equal to zero.

The hypotheses can be divided into two kinds: those dealing with the main
effects and the one assessing the overall model stated in Equation 3.

Main effects hypotheses
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The main effects hypotheses test, for each predictor, 𝑋𝑖, if the predictor has a
significant effect on the response variable 𝑌.𝐻0: There is no linear relationship between the environmental variables
(augMean, febRange, febSD, augSD, and annMean) and the community composi-
tion as measured by 𝛽sør (in Y). Formally, for each predictor variable 𝑋𝑖:
• 𝐻0 ∶ 𝛽𝑖 = 0 for 𝑖 = 1, 2, 3, 4, 5

Where 𝛽𝑖 are the coefficients of the predictors in the multiple linear regression
model.𝐻𝐴: There is a linear relationship between the environmental variables (augMean,
febRange, febSD, augSD, and annMean) and the species composition as measured
by 𝛽sør:
• 𝐻𝐴 ∶ 𝛽𝑖 ≠ 0 for 𝑖 = 1, 2, 3, 4, 5

Overall hypothesis
In addition to testing the individual predictors, 𝑋𝑖, we can also test a hypothesis

about the overall significance of the model (F-test), which examines whether the
model as a whole explains a significant amount of variance in the response variable𝑌. A significant F-test would suggest that at least one predictor (excluding the
intercept) in the model is likely to be significantly related to the response, but it
requires further investigation of individual predictors and potential multicollinearity
to fully understand the relationships. For the overall model hypothesis:

Null Hypothesis (𝐻0):
• 𝐻0 ∶ 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 0

Alternative Hypothesis (𝐻𝐴):
• 𝐻𝐴 ∶ ∃ 𝛽𝑖 ≠ 0 for at least one 𝑖
6.6.3 Fit the Model

We fit two models:
• a full model that includes an intercept term and the five environmental variables,
and

• a null model that includes only an intercept term.
The reason the null model is included is to compare the full model with a

model that has no predictors. This comparison will help us determine which of the
predictors are useful in explaining the response variable—we will see this in action
in the forward model selection process later on (Section 6.6.5).

# Select only the variables that will be used in model building
sw_sub1 <- sw_ectz[, c("Y", "augMean", "febRange",

"febSD", "augSD", "annMean")]

# Fit the full and null models
full_mod1 <- lm(Y ~ augMean + febRange + febSD +

augSD + annMean, data = sw_sub1)
null_mod1 <- lm(Y ~ 1, data = sw_sub1)
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# Add fitted values from the full model to the dataframe
sw_ectz$.fitted <- fitted(full_mod1)

6.6.4 Dealing With Multicollinearity

Some of the predictor variables may be correlated with each other and this can lead
to multicollinearity. When predictor variables are highly correlated, the model may
not be able to distinguish the individual effects of each predictor. Consequently, the
model becomes less precise and harder to interpret due to the coefficients’ inflated
standard errors ([4]). One can create a plot of pairwise correlations to visually inspect
the correlation structure of the predictors. I’ll not do this here, but you can try it on
your own.

A formal way to detect multicollinearity is to calculate the variance inflation
factor (VIF) for each predictor variable. The VIF measures how much the variance
of the estimated regression coefficients is increased due to multicollinearity. A VIF
value greater than 5 or 10 indicates a problematic amount of multicollinearity.

initial_formula <- as.formula("Y ~ .")

threshold <- 10 # Define a threshold for VIF values

# Extract the names of the predictor variables
predictors <- names(vif(full_mod1))

# Iteratively remove collinear variables
while (TRUE) {
# Calculate VIF values
vif_values <- vif(full_mod1)
print(vif_values) # Print VIF values for debugging
max_vif <- max(vif_values)

# Check if the maximum VIF is above the threshold
if (max_vif > threshold) {

# Find the variable with the highest VIF
high_vif_var <- names(which.max(vif_values))
cat("Removing variable:",

high_vif_var,
"with VIF:",
max_vif,
"\n")

# Update the formula to exclude the high VIF variable
updated_formula <- as.formula(paste("Y ~ . -", high_vif_var))

# Refit the model without the high VIF variable
full_mod1 <- lm(updated_formula, data = sw_sub1)
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# Update the environment data frame to reflect the removal
sw_sub1 <- sw_sub1[, !(names(sw_sub1) %in% high_vif_var)]

} else {
break

}
}
> augMean febRange febSD augSD annMean
> 27.947767 10.806635 8.765732 2.497739 31.061900
> Removing variable: annMean with VIF: 31.0619
> augMean febRange febSD augSD
> 2.290171 10.648752 8.637679 1.616390
> Removing variable: febRange with VIF: 10.64875
> augMean febSD augSD
> 1.423601 1.674397 1.585055

Regularisation techniques such as ridge regression, lasso regression, or elastic
net can also be used to deal with multicollinearity. These advanced techniques add
a penalty term to the regression model that shrinks the coefficients towards zero,
which can help to reduce the impact of multicollinearity. However, these techniques
are not covered in this guide. Please refer to Chapter 9 for more information on
regularisation techniques.

6.6.5 Perform Forward Selection

It might be that not all of the variables included in the full model are necessary to
explain the response variable. We can use a stepwise regression to select the best
combination (subset) of predictors that best explains the response variable. To do
this, we will use the stepAIC function that lives in the MASS package.

stepAIC()works by startingwith the nullmodel and then adding predictors one
by one, selecting the one that improves the model the most as seen in the reduction
of the AIC values along the way. This process continues until no more predictors can
be added to improve the model (i.e. to further reduce the AIC). Progress is tracked
as the function runs.

# Perform forward selection
mod1 <- stepAIC(null_mod1,

scope = list(lower = null_mod1, upper = full_mod1),
direction = "forward")

> Start: AIC=-1044.97
> Y ~ 1
>
> Df Sum of Sq RSS AIC
> + augMean 1 6.0084 1.7108 -1478.4
> + febSD 1 3.0759 4.6433 -1189.9
> + augSD 1 2.6394 5.0797 -1163.9
> <none> 7.7192 -1045.0
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>
> Step: AIC=-1478.41
> Y ~ augMean
>
> Df Sum of Sq RSS AIC
> + febSD 1 0.36036 1.3504 -1544.8
> + augSD 1 0.31243 1.3984 -1534.7
> <none> 1.7108 -1478.4
>
> Step: AIC=-1544.77
> Y ~ augMean + febSD
>
> Df Sum of Sq RSS AIC
> + augSD 1 0.10568 1.2448 -1566.3
> <none> 1.3504 -1544.8
>
> Step: AIC=-1566.32
> Y ~ augMean + febSD + augSD

The model selection process shows that as we add more variables to the model,
the AIC value decreases. We can infer from this that the multiple regression model
provides a better fit that simple linear models that use the variables in isolation.

We also see that stepAIC() has not removed any variables from the full model.
Probably one reason for failing to remove any variables is that the VIF process has
already accomplished this by virtue of dealing with multicollinearity. This means
that all the variables retained in mod1 are important in explaining the response
variable.

6.6.6 Added-Variable Plots (Partial Regression Plots)

Before looking at the output in more detail, I’ll introduce partial regression plots as a
means to examine the relationship between the response variable and each predictor
variable. Although they can be calculated by hand, the car package provides a
convenient function, avPlots(), to create these plots.

Added variable plots are also sometimes called ‘partial regression plots’ or ‘indi-
vidual coefficient plots.’ They are used to display the relationship between a response
variable and an individual predictor variable while accounting for the effect of other
predictor variables in a multiple regression model (the marginal effect).

# Create partial regression plots
avPlots(mod1, col = "dodgerblue4", col.lines = "magenta")

What insights can we draw from the added-variable plots? Although there are
better ways to assess the model fit, we can already make some observations about
the linearity of the model or the presence of outliers. The slope of the line in an
added variable plot corresponds to the regression coefficient for that predictor in the
full multiple regression model. Seen in this way, it visually indicates the magnitude
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Figure 6.2. Partial regression plots for mod1 with the selected variables augMean,
febSD, and augSD.

and direction of each predictor’s effect. In Figure 6.2, the added-variable plot for
augMean shows a tighter clustering of points around the regression line and a strong
linear relationship (steep slope) with the response variable; the plots for febSD
and augSD, on the other hand, show a weaker response and more scatter about the
regression line. Importantly, this suggests that augMean has a stronger and more
unique contribution to the multiple-variable model than the other two variables.

There are also insights to be made about possible multicollinearity using added-
variable plots. These plots are not a definitive test for multicollinearity, but they
can provide some clues. Notably, if a predictor shows a strong relationship with the
response variable in a simple correlation but appears to have little relationship in
the added-variable plot, it might indicate collinearity with other predictors. This
discrepancy suggests that the predictor’s effect on the response is being masked by
the presence of other correlated predictors.

6.6.7 Model Diagnostics

We are back in the territory of parametric statistics, so we need to check the as-
sumptions of the multiple linear regression model (similar to those of simple linear
regression). We can do this by making the various diagnostic plots. all of them con-
sider various aspects of the residuals, which are simply the differences between the
observed and predicted values.

Diagnostic plots of final model
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Figure 6.3. Diagnostic plots to assess the fit of the final multiple linear regression
model, mod1.

You have been introduced to diagnostic plots in the context of simple linear
regression (Section 4.1). They are also useful in multiple linear regression. Although
plot.lm() can easily do this, here I use autoplot() from the ggfortify package.
When applied to the final model, mod1, the plot will in its default setting show four
diagnostic plots: residuals vs. fitted values, normal Q-Q plot, scale-location plot, and
residuals vs. leverage plot. Note, this is for the full model inclusive of the combined
contributions of all the predictors, so we will not see separate plots for each predictor
as we have seen in the added-variable plots or component plus residual plots.

# Generate diagnostic plots
autoplot(mod1, shape = 21, colour = "dodgerblue4",

smooth.colour = "magenta") +
theme_bw()

Residuals vs. Fitted Values: In this plot we can assess linearity and ho-
moscedasticity of the residuals. If the seaweed gods were with us, we’d expect
the points to be randomly scattered about a horizontal line situation at zero. This
would indicate that the relationship between the predictors selected by the forward
selection process (augMean, febSD, and augSD) and the response variable (Y) is lin-
ear, and the variance of the residuals is constant across the range of fitted values. In
this plot, there’s a very slight curvature which might suggest a potential issue with
the linearity assumption—it is minute and I’d suggest not worrying about it. The
variance of the residuals seems to decrease slightly at higher fitted values, indicating
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a mild case of heteroscedasticity.
Q-Q Plot (Quantile-Quantile Plot): This plot is used to check the normality of

the residuals. The points should fall approximately along a straight diagonal line if
the residuals are normally distributed. Here we see that the points generally follow
the line although some deviations may be seen at the tails. These deviations are not
that extreme and again I don’t think this is not a big concern.

Scale-Location Plot: This plot should reveal potential issues with homoscedas-
ticity. The square root of the standardised residuals is used here to make it easier
to spot patterns, so we would like the points to be randomly scattered around the
horizontal red line. Here, the line slopes slightly downward and this indicates that
the variance of the residuals might decrease as the fitted values increase.We can also
see evidence of this in a plot of the observed values vs. the predictors in Figure 6.3.

Residuals vs. Leverage: This diagnostic highlights influential points (outliers).
Points with high leverage (far from the mean of the predictors) can be expected to
exert a strong influence on the regression line, tilting it in some direction. Cook’s
distance (indicated by the yellow line) helps identify such outliers. In our seaweed
data a few points could have a high leverage, but since they don’t seem to cross the
Cook’s distance thresholds, I doubt they are overly worrisome.

Considering that no glaring red flags were raised by the diagnostic plots, I doubt
that they are severe enough to invalidate the model. However, if you cannot stand
these small issues, you could i) consider transforming the predictor or response
variables to address your concerns about heteroscedasticity, ii) investigate the outliers
(high leverage points) to confirm if they are valid data points or errors, or iii) try
robust regression methods that are less sensitive to outliers and heteroscedasticity.

Component plus residual plots
Component plus residual plots offer another way to assess the fit of the model in

multiple regression models. Unlike simple linear regression where we only had one
predictor variable, here we have several. So, we need to assure ourselves that there
is a linear relationship between each predictor variable and the response variable
(we could already see this in the added-variable plots in Section 6.6.6). We can make
component plus residual plots using the crPlots() function in the car package. It
displays the relationship between the response variable and each predictor variable.
If the relationship is linear, the points should be randomly scattered about a best
fit line and the spline (in pink in Figure 6.4) should plot nearly on top of the linear
regression line.

# Generate component plus residual plots
crPlots(mod1, col = "dodgerblue4", col.lines = "magenta")

6.6.8 Understanding the Model Fit

The abovemodel selection process has led us to the mod1model, which can be stated
formally as: 𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝜖 (4)
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Figure 6.4. Component plus residual diagnostic plots to assess the fit of the final
multiple linear regression model, mod1.

Where:
• 𝑌: The response variable, the mean Sørensen dissimilarity.
• 𝑋1, 𝑋2, and 𝑋3: The predictors corresponding to augMean, febSD, and augSD,
respectively.

• 𝜖: The error term.
We have convinced ourselves that the model is a good fit for the data, and we

can proceed to examine the model’s output. The fitted model can be explored in two
ways: by applying the summary() function or by using the anova() function. The
summary() function provides a detailed output of the model, while the anova()
function provides a table of deviance values that can be used to compare models.

The model summary

# Summary of the selected model
summary(mod1)
>
> Call:
> lm(formula = Y ~ augMean + febSD + augSD, data = sw_sub1)
>
> Residuals:
> Min 1Q Median 3Q Max
> -0.153994 -0.049229 -0.006086 0.045947 0.148579
>
> Coefficients:



6.6. EXAMPLE 1: THE SEAWEED DATASET 81

> Estimate Std. Error t value Pr(>|t|)
> (Intercept) 0.028365 0.007020 4.040 6.87e-05 *﯂﯂﯂
> augMean 0.283335 0.011131 25.455 < 2e-16 *﯂﯂﯂
> febSD 0.049639 0.008370 5.930 8.73e-09 *﯂﯂﯂
> augSD 0.022150 0.004503 4.919 1.47e-06 *﯂﯂﯂
> ---
> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Residual standard error: 0.06609 on 285 degrees of freedom
> Multiple R-squared: 0.8387, Adjusted R-squared: 0.837
> F-statistic: 494.1 on 3 and 285 DF, p-value: < 2.2e-16

The first part of the summary() function’s output is the Coefficients section.
This is where the main effects hypotheses are tested (this model does not have
interactions—if there were, they’d appear here, too). The important components of
the coefficients part of the model summary are:
• (Intercept): This row provides information about where the regression line
intersects the y-axis.

• Main Effects:
– augMean, febSD, and augSD: These rows give the model coefficients associ-
ated with the slopes of the regression lines fit to those predictor variables.
They indicate the rate of change in the response variable for a one-unit
change in the predictor variable.

– Estimate, Std. Error, t value, and Pr(>|t|): These columns contain
the statistics used to interpret the hypotheses about the main effects. In
the Estimate column are the coefficients for the y-intercept and the main
effects’ slopes, and Std. Error indicates the variability of the estimate.
The t value is obtained by dividing the coefficient by its standard error.
The p-value tests the null hypothesis that the coefficient is equal to zero
and significance codes are provided as a quick visual reference (their use
is sometimes frowned upon by statistics purists). Using this information,
we can quickly see that, for example, augMean has a coefficient of 0.2833 ±0.0111 and the slope of the line is highly significant, i.e. there is a significant
effect of Y due to the temperature gradient set up by augMean.

INFO The intercept and slope coefficients

The interpretation of the coefficients is a bit more complicated in multiple
linear regression compared to what we are accustomed to in simple linear
regression. Let us look at some greater detail at the intercept and the slope
coefficients:
Intercept (𝛼): ) The intercept is the expected value of the response variable, 𝑌,
when all predictor variables are zero. It is not always meaningful, but it can
be useful in some cases.
Slope Coefficients (𝛽1, 𝛽2,… , 𝛽𝑘): Each slope coefficient, 𝛽𝑗, represents the
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expected change in the response variable, 𝑌, for a one-unit increase in the
predictor variable, 𝑋𝑗, holding all other predictor variables constant. This
partial effect interpretation implies that 𝛽𝑗 accounts for the direct contribution
of 𝑋𝑗 to 𝑌 while removing the confounding effects of other predictors in the
model. Figure 6.2 provides a visual representation of this concept and isolates
the effect of each predictor variable on the response variable.
Therefore, in the context of ourmodel (Equation 4) for this analysis, the partial
interpretation is as follows:
• 𝛽1: Represents the change in 𝑌 for a one-unit increase in 𝑋1, holding 𝑋2 and𝑋3 constant.
• 𝛽2: Represents the change in 𝑌 for a one-unit increase in 𝑋2, holding 𝑋1 and𝑋3 constant.
• 𝛽3: Represents the change in 𝑌 for a one-unit increase in 𝑋3, holding 𝑋1 and𝑋2 constant.
There are also several overall model fit statistics—it is here where you’ll find the

information you need to assess the hypothesis about the overall significance of the
model. Residual standard error indicates the average distance between ob-
served and fitted values. Multiple R-squared and Adjusted R-squared values
tell us something about the model’s goodness of fit. The latter adjusts for the num-
ber of predictors in the model, and is the one you must use and report in multiple
linear regressions. As you also know, higher numbers approaching 1 are better, with
1 suggesting that the model perfectly captures all of the variability in the data. The
F-statistic and its associated p-value test the overall significance of the model
and examines whether all regression coefficients are simultaneously equal to zero.
You can also use the brief overview of the residuals, but I don’t find this particularly
helpful—best examine the residuals in a histogram.

The ANOVA tables

anova(mod1)
> Analysis of Variance Table
>
> Response: Y
> Df Sum Sq Mean Sq F value Pr(>F)
> augMean 1 6.0084 6.0084 1375.660 < 2.2e-16 *﯂﯂﯂
> febSD 1 0.3604 0.3604 82.507 < 2.2e-16 *﯂﯂﯂
> augSD 1 0.1057 0.1057 24.196 1.473e-06 *﯂﯂﯂
> Residuals 285 1.2448 0.0044
> ---
> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This function provides a sequential analysis of variance (Type I ANOVA) table
for the regression model (see more about Type I ANOVA, below). As such, this
function can also be used to compare nested models. Used on a single model, it gives
a more interpretable breakdown of the variability in the response variable Y and
assesses the contribution of each predictor variable in explaining this variability.
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The ANOVA table firstly shows the degrees of freedom (Df) for each predictor
variable added sequentially to the model, as well as the residuals. For each predictor,
the degrees of freedom is typically 1. For the residuals, however, it represents the
total number of observations minus the number of estimated parameters. The Sum
of Squares (Sum Sq) indicates the variability in Y attributable to each predictor, and
the mean sum of squares (Mean Sq) is the sum of squares divided by the degrees of
freedom.

The F value is calculated as the ratio of the predictor’s mean square to the
residual mean square tests. It is used in testing the null hypothesis that the predictor
has no effect on Y. Whether or not we accept the alternative hypothesis (reject the
null) is given by the p-value (Pr(>F)) that goes with each F-statistic. You know how
that works.

Because this is a sequential ANOVA, the amount of variance in Y explained
by each predictor (or group of predictors) is calculated by adding the predictors to
the model in sequence (as specified in the model formula). For example, the Sum
of Squares for augMean (6.0084) represents the amount of variance explained by
adding augMean to a model that doesn’t include any predictors yet. The Sum of
Squares for febSD 0.3604) represents the amount of variance explained by adding
febSD to a model that already includes augMean—this improvement indicates that
febSD explains some of the variance in Y that augMean doesn’t.

INFO Order in which predictors are assessed in multiple linear regression

The interpretation of sequential ANOVA (Type I) is inherently dependent on
the order in which predictors are entered. In mod1 the order is first augMean,
then febSD, and last comes augSD. This order might not be the most mean-
ingful for interpreting the sequential sums of squares and their significance
in the ANOVA table. How, then, does one decide on the order of predictors in
the model?
• If you have a strong theoretical or causal basis for thinking that certain
predictors influence others, you can enter them in that order.

• If you have a hierarchy of predictors based on their importance or general
vs. specific nature, you can enter them hierarchically.

• You canmanually fitmodelswith different predictor orders and compare the
ANOVA tables to see how the results change. This can be time-consuming
but might offer insights into the sensitivity of your conclusions to the order
of entry.

• You can use automated model selection procedures, such as stepwise re-
gression, to determine the best order of predictors. This is a more objective
approach but can be criticised for being data-driven and not theory-driven.

• Use Type II or Type III ANOVAs, which are are not order-dependent and
can be used to assess the significance of predictors after accounting for all
other predictors in the model. However, they have their own limitations
and assumptions that need to be considered.

My advice would be to have sound theoretical reasons for the order of predic-
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Figure 6.5. Plot of observed vs. predicted value obtained from the final multiple
linear regression model (mod) with the selected variables augMean, febSD, and
augSD as predictors (black points), and the initial model with also annMean and
febRange (red points).

tors in the model.

Bothways of looking at themodel fit of mod1—summary() and anova()—show
that forward selection retained the variables augMean, febSD, and augSD. These
three predictors should be used together to explain the response, Y.

Let’s make a plot of the full model with all the initial predictors and the selected
model with the predictors chosen by the forward selection process.

# Add fitted values from the selected model to the dataframe
sw_ectz$.fitted_selected <- fitted(mod1)

# Create the plot of observed vs fitted values for the selected model
ggplot(sw_ectz, aes(x = .fitted_selected, y = Y)) +
geom_point(shape = 1, colour = "black", alpha = 1.0) +
geom_point(aes(x = .fitted), colour = "red",

shape = 1, alpha = 0.4) +
geom_abline(intercept = 0, slope = 1,

color = "blue", linetype = "dashed") +
labs(x = "Fitted Values",

y = "Observed Values") +
theme_bw()

6.6.9 Reporting

A Results section should be written in a format sutable for inclusion in your report
or publication. Present the results in a clear and concise manner, with tables and
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figures used to help substantiate your findings. The results should be interpreted
in the context of the research question and the study design. The limitations of
the analysis should also be discussed, along with any potential sources of bias or
confounding. Here is an example.

Results
The model demonstrates a strong overall fit, as indicated by the high 𝑅2 value of

0.839 and an adjusted𝑅2 of 0.837, suggesting that approximately 83.7% of the variance
in the mean Sørensen dissimilarity is explained by the predictors augMean, febSD,
and augSD. All predictors in the model are statistically significant, with augMean
showing the strongest effect (𝛽1 = 0.283, 𝑝 < 0.0001) (Figure 6.2). The predictors
febSD and augSD also have significant positive relationships with the response
variable (𝛽2 = 0.050, 𝑝 = 0.0001; 𝛽3 = 0.022, 𝑝 = 0.0001). A sequential ANOVA
further confirms the significance of each predictor variable in the model, with all
F-values indicating that the inclusion of each predictor significantly improves the
model fit (𝑝 < 0.0001 in all cases). Ourmodel therefore provides clear support for the
mean temperatures in August, the standard deviation of temperatures in February,
and the standard deviation of temperatures in August as strong predictors of the
mean Sørensen dissimilarity, with each contributing uniquely to the explanation of
variability in the response variable.

6.7 example 2: interaction of distance and bioregion

Our seaweed dataset includes two additional variables that we have not yet con-
sidered. These are the continuous variable dist which represents the geographic
distance between the seaweed samples taken along the coast of South Africa, and
the categorical variable bio which is the bioregional classification of the seaweed
samples.

These two new variables lend themselves to a few interesting questions. For
example:
1. Is the geographic distance between samples related to the Sørensens dissimilarity

of the seaweed flora?
2. Does the average Sørensens dissimilarity vary among the bioregions to which

the samples belong?
3. Is the effect of geographic distance on the Sørensens dissimilarity different for

each bioregion?
The most complex model is (3), the one that answers the question about whether

the effect of dist on the response variable𝑌 is different for each bioregion.Questions
(1) and (2) are subsets of thismore inclusive question. To fully answer these quesitons,
let’s first consider the full model, which includes an interaction term between the
continuous predictor dist and the categorical predictor bio. When we finally test
our model, we will also have to consider the simpler models that do not include the
interaction term.

‘Interaction’ means that the effect of one predictor on the response variable is
contingent on the value of another predictor. For example, we might have reason
to suspect that the relationship of the Sørensens dissimilarity with the geographic
distance between samples is different between the west coast compared to, say, the
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east coast. This is indeed a plausible expectation, but we will test this formally below.
The full multiple linear regression model with the interaction terms can be

formally expressed as Equation 5:

𝑌 = 𝛼 + 𝛽1dist + 𝛽2bioB-ATZ + 𝛽3bioBMP+ 𝛽4bioECTZ + 𝛽5(dist × bioB-ATZ)+ 𝛽6(dist × bioBMP) + 𝛽7(dist × bioECTZ) + 𝜖 (5)

Where:
• 𝑌: The response variable, the mean Sørensen dissimilarity.
• 𝛼: The intercept term.
• dist: The continuous predictor variable representing distance.
• bio: The categorical predictor variable representing bioregional classification with
four levels: AMP (reference category), B-ATZ, BMP, and ECTZ.

• bioB-ATZ, bioBMP, bioECTZ: Dummy variables for the bioregional classification,
where:

– bioB-ATZ = 1 if bio = B-ATZ, and 0 otherwise,
– bioBMP = 1 if bio = BMP, and 0 otherwise, and
– bioECTZ = 1 if bio = ECTZ, and 0 otherwise.

• dist × bioB-ATZ, dist × bioBMP, dist × bioECTZ: Interaction terms between distance
and the bioregional classification dummy variables.

• 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7: The coefficients to be estimated for the main effects and
interactions.

• 𝜖: The error term.
If this seems tricky, it is because of the dummy variable coding used to represent

interactions in multiple linear regression. The bio variable is a categorical variable
with four levels, so we need to create three dummy variables to represent the biore-
gional classification. The dist variable is then interacted with each of these dummy
variables to create the interaction terms. The lm() function in R takes care of this
for us in a far less complicated model statement. I’ll explain the details around the
interpretation of dummy variable coding when we look at the output of the model
with the summary() function.

6.7.1 State the Hypotheses for a Multiple Linear Regression with Interaction Terms

Equation 5 expands into the following series of hypotheses that concern the main
effects, the interactions between the main effects, and the overall hypothesis:

Main effects hypotheses
In the main effects hypotheses we are concerned with the effect of each predictor

variable on the response variable. For the main effect of distance we have the null:
• 𝐻0 ∶ 𝛽1 = 0

vs. the alternative:
• 𝐻𝐴 ∶ 𝛽1 ≠ 0

For the main effect of bioregional classification, the nulls are:
• 𝐻0 ∶ 𝛽2 = 0 (bioB-ATZ)
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• 𝐻0 ∶ 𝛽3 = 0 (bioBMP)
• 𝐻0 ∶ 𝛽4 = 0 (bioECTZ)

vs. the alternatives:
• 𝐻𝐴 ∶ 𝛽2 ≠ 0 (bioB-ATZ)
• 𝐻𝐴 ∶ 𝛽3 ≠ 0 (bioBMP)
• 𝐻𝐴 ∶ 𝛽4 ≠ 0 (bioECTZ)

Hypotheses about interactions
This is where the hypothesis tests whether the effect of distance on the response

variable is different for each bioregional classification. The null hypotheses are:
• 𝐻0 ∶ 𝛽5 = 0 (dist × bioB-ATZ)
• 𝐻0 ∶ 𝛽6 = 0 (dist × bioBMP)
• 𝐻0 ∶ 𝛽7 = 0 (dist × bioECTZ)

vs. the alternatives:
• 𝐻𝐴 ∶ 𝛽5 ≠ 0 (dist × bioB-ATZ)
• 𝐻𝐴 ∶ 𝛽6 ≠ 0 (dist × bioBMP)
• 𝐻𝐴 ∶ 𝛽7 ≠ 0 (dist × bioECTZ)

Overall hypothesis
The overall hypothesis states that all coefficients associated with the predictors

(distance, bioregional categories, and their interactions) are equal to zero, therefore
indicating no relationship between these predictors and the response variable, the
Sørensen index. The null hypothesis is:
• 𝐻0 ∶ 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 𝛽6 = 𝛽7 = 0

vs. the alternative:
• 𝐻𝐴 ∶ ∃ 𝛽𝑖 ≠ 0 for at least one 𝑖
6.7.2 Visualise the Main Effects

To facilitate the interpretation of the main effects hypotheses andmake an argument
for why an interaction term might be necessary, I’ve visualised the main effects
(Figure 6.6). I see this as part of my exploratory data analysis ensemble of tests. We
see that fitting a straight line to the Y vs. distance relationship seems unsatisfactory
as there is too much scatter around that single line to adequately capture all the
structure in the variability of the points. Colouring the points by bioregion reveals
the hidden structure. The model could benefit from including an additional level
of complexity: see how points in the same bioregion show less scatter compared to
points in different bioregions.

Now look at the boxplots of the Sørensen dissimilarity index for each bioregional
classification. It shows that the median values of the Sørensen dissimilarity index
are different for each bioregion. Taken together, Figure 6.6 (A, B) provide a good
indication that adding the bioregional classification might be an important predictor
of the Sørensen dissimilarity index as a function of distance between pairs of sites
along the coast.

Next, we will move ahead and fit the model inclusive of the distance along the
coast and bioregion as per Equation (5).
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Figure 6.6. Plot of main effects of A) distance along the coast and B) bioregional
classification on the Sørensen dissimilarity index.

6.7.3 Fit and Assess Nested Models

I have a suspicion that the full model (mod2; see below) with the interaction terms
will be a better fit than reduced models with only the effect due to distance (seen
independently). How can we have greater certainty that we should indeed favour
a slightly more complex model (with two predictors) over a simpler one with only
(distance only)?

One way to do this is to use a nested model comparison. We will fit a reduced
model (one slope for all bioregions) and compare this model to the full model (slopes
are allowed to vary among bioregions).

# Fit the linear regression model with only distance
mod2a <- lm(Y ~ dist, data = sw)

# Fit the multiple linear regression model with interaction terms
mod2 <- lm(Y ~ dist * bio, data = sw)

This is a nested model where mod2a is nested within mod2. ‘Nested’ means that
the reduced model is a subset of the full model. Nested models can be used to test
hypotheses about the significance of the predictors in the full model—does adding
more predictors to the model improve the fit? Comparing a nested model with a full
model can be done with a sequential ANOVA, which is what the anova() function
also does (in addition to its use in Section 6.6.8).



6.7. EXAMPLE 2: INTERACTION OF DISTANCE AND BIOREGION 89

So, comparing mod2a to mod2 with an F-test tests the significance of adding the
bio and using it together with dist. The interaction is built into mod2 but we are
not yet testing the significance of the interaction terms. We will do that later.

anova(mod2a, mod2, test = "F")
> Analysis of Variance Table
>
> Model 1: Y ~ dist
> Model 2: Y ~ dist * bio
> Res.Df RSS Df Sum of Sq F Pr(>F)
> 1 968 7.7388
> 2 962 2.2507 6 5.4881 390.95 < 2.2e-16 *﯂﯂﯂
> ---
> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The sequential ANOVA shows that there is significant merit to consider an
interaction term in the model. This model would then allow us to have a separate
slope for the Sørensen index as function of distance for each bioregion. The residual
sum of squares (RSS) decreases from 7.7388 in Model 1 to 2.2507 in Model 2, which
indicates that Model 2 explains a significantly larger proportion of the variance in
the response variable. The F-test for comparing the two models yields an F-value of
390.95 with a highly significant p-value (< 0.0001). The improvement in model fit
due to the inclusion of the interaction term is therefore statistically significant.

The above analyses skirted around the questions stated in the beginning of
Section 6.7. I’ve provided statistical evidence that full model is a better fit than the
reduced model (the sequential F-test tested this), so we should use both dist and
bio in the model. I have not looked explicitly at the main effects of the predictors.
However, we can easily address questions (1) and (2):
• Question 1: looking at the summary of mod2a tells us that the main effect of dist
is a significant (p < 0.0001) predictor of the Sørensen dissimilarity index.

• Question 2: the main effect of bio is also significant (p < 0.0001), which is what
we’d see if we fit the model mod2b <-- lm(Y ~ bio, data = sw).
Question 3 warrants deeper investigation. Next, we will look at the interaction

terms in the full model mod2 to see if the effect of dist on Y is different for each
level of bio.

6.7.4 Interpret the Full Model

The model summary

# Summary of the model
summary(mod2)
>
> Call:
> lm(formula = Y ~ dist * bio, data = sw)
>
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> Residuals:
> Min 1Q Median 3Q Max
> -0.112117 -0.030176 -0.004195 0.023698 0.233520
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
> (Intercept) 5.341e-03 4.177e-03 1.279 0.2013
> dist 3.530e-04 1.140e-05 30.958 < 2e-16 *﯂﯂﯂
> bioB-ATZ -6.140e-03 1.659e-02 -0.370 0.7114
> bioBMP 3.820e-02 6.659e-03 5.737 1.29e-08 *﯂﯂﯂
> bioECTZ 1.629e-02 6.447e-03 2.527 0.0117 *
> dist:bioB-ATZ 7.976e-04 1.875e-04 4.255 2.30e-05 *﯂﯂﯂
> dist:bioBMP -1.285e-04 2.065e-05 -6.222 7.31e-10 *﯂﯂﯂
> dist:bioECTZ 4.213e-04 1.801e-05 23.392 < 2e-16 *﯂﯂﯂
> ---
> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Residual standard error: 0.04837 on 962 degrees of freedom
> Multiple R-squared: 0.8607, Adjusted R-squared: 0.8597
> F-statistic: 849.2 on 7 and 962 DF, p-value: < 2.2e-16

In the output returned by summary(mod2), we need to pay special atten-
tion to the use of dummy variable encoding for the categorical predictor. The
Coefficients section is similar to that of mod1 (see Section 6.6.8), but now it
includes the categorical predictor bio﯂ and the interaction terms dist:bio﯂ (*
indicating the levels of the categorical variable). The bio variable has four levels,
BMP, B-ATZ, AMP, and ECTZ, and AMP is selected as reference level. This decision
to selected AMP as reference is entirely arbitrary, and alphabetical sorting offers a
convenient approach to selecting the reference. The coefficients for the other levels
of bio are interpreted as the sum of the response variable and the reference level.

The following are the key coefficients in the model summary:
• (Intercept): This is the estimated average value of Ywhen dist is zero and bio
is the reference category (AMP). Its p-value (> 0.05) suggests it’s not significantly
different from zero.

• Main Effects:
– dist: This represents the estimated change in Y for a one-unit increase in
dist when the bioregion is the reference category, AMP. The highly signifi-
cant p-value (< 0.0001) indicates a strong effect of distance in the AMP.

– bioB-ATZ, bioBMP, bioECTZ: These are dummy variables representing dif-
ferent bioregions. Their coefficients indicate the difference in the average
value of Y between each of these bioregions and the reference bioregion
when dist is zero. Only bioBMP and bioECTZ are significantly different
from the reference bioregion, AMP.

• Interaction Effects:
– dist:bioB-ATZ, dist:bioBMP, dist:bioECTZ: These interaction terms
capture how the effect of dist on Y varies across different bioregions. For
instance, dist:bioB-ATZ indicates the additional change in the effect of
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dist in the B-ATZ bioregion compared to the reference bioregion, AMP. All
interaction terms are highly significant, suggesting the effect of distance is
different across bioregions.

Given this explanation, we can now interpret the coefficients of, for example, the
bioB-ATZmain effect and dist:bioB-ATZ interaction. Since AMP is the reference
bioregion, its effect is absorbed into the intercept term. Therefore, the coefficient for
bioB-ATZ directly reflects the difference we are interested in. The coefficient for
bioB-ATZ is -0.0061 ± 0.0166 lower than that of the reference, but the associated
p-value (> 0.05) indicates that the average value of Y in the B-ATZ bioregion is not
significantly different from the reference bioregion, AMP.

If we’d want to report the actual coefficient for B-ATZ, we’d calculate the sum of
the coefficients for (Intercept) and bioB-ATZ. This would give us the estimated
average value of Y in the B-ATZ bioregion when dist is zero. The associated SE is
calculated as the square root of the sum of the squared SEs of the two coefficients.
Therefore, the coefficient for B-ATZ is −8 × 10−4 ± 0.0171.

The coefficient of 8 × 10−4 for dist:bioB-ATZ indicates that the effect of dis-
tance on Y is 8 × 10−4 units greater in the B-ATZ bioregion compared to the AMP
bioregion. The SE of 2 × 10−4 suggests a high level of precision in this estimate, and
the p-value (< 0.0001) indicates that this difference is statistically significant.

As before, to calculate the actual coefficient for dist in the B-ATZ bioregion,
we’d sum the coefficients for dist and dist:bioB-ATZ. The associated SE of this
sum is calculated as the square root of the sum of the squared SEs of the two
coefficients. Therefore, the coefficient for dist in the B-ATZ bioregion is 0.0012 ±2 × 10−4.

Concerning the overall hypothesis, the Adjusted R-squared value of 0.8597
indicates that the model explains 85.97% of the variance in the response variable
Y. The F-statistic and associated p-value (< 0.0001) indicate that the model
as a whole is highly significant, meaning at least one of the predictors (including
interactions) has a significant effect on Y.

The ANOVA table

# The ANOVA table
anova(mod2)
> Analysis of Variance Table
>
> Response: Y
> Df Sum Sq Mean Sq F value Pr(>F)
> dist 1 8.4199 8.4199 3598.79 < 2.2e-16 *﯂﯂﯂
> bio 3 3.6232 1.2077 516.21 < 2.2e-16 *﯂﯂﯂
> dist:bio 3 1.8648 0.6216 265.69 < 2.2e-16 *﯂﯂﯂
> Residuals 962 2.2507 0.0023
> ---
> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ANOVA table’s interpretation is intuitive and simple: the Pr(>F) column
shows the p-value for each predictor in the model. The dist predictor has a highly
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significant effect on Y (< 0.0001), as do all the bioregions and their interactions with
dist. This confirms the results we obtained from the coefficients. We don’t need to
overthink this result.

6.8 example 3: the final model

I’ll now expand mod1 to include bio as a predictor alongside augMean, febSD, and
augSD (mod1 was applied only to data pertaining to ECTZ, one of the four levels in
bio).

𝑌 = 𝛼 + 𝛽1augMean + 𝛽2febSD + 𝛽3augSD+ 𝛽4bioB-ATZ + 𝛽5bioBMP + 𝛽6bioECTZ+ 𝛽7(augMean × bioB-ATZ) + 𝛽8(augMean × bioBMP)+ 𝛽9(augMean × bioECTZ) + 𝛽10(febSD × bioB-ATZ)+ 𝛽11(febSD × bioBMP) + 𝛽12(febSD × bioECTZ)+ 𝛽13(augSD × bioB-ATZ) + 𝛽14(augSD × bioBMP)+ 𝛽15(augSD × bioECTZ) + 𝜖 (6)

Where:
• 𝑌: The response variable (mean Sørensen dissimilarity).
• 𝛼: The intercept term, representing the expected value of Y when all predictors
are zero and bio is at the reference level AMP).

• 𝛽1: The coefficient for the main effect of augMean.
• 𝛽2: The coefficient for the main effect of febSD.
• 𝛽3: The coefficient for the main effect of augSD.
• 𝛽4, 𝛽5, 𝛽6: The coefficients for the main effects of the categorical predictor bio (for
levels B-ATZ, BMP, and ECTZ respectively, with AMP as the reference category).

• 𝛽7, 𝛽8, 𝛽9: The coefficients for the interaction effects between augMean and bio
(for levels B-ATZ, BMP, and ECTZ respectively).

• 𝛽10, 𝛽11, 𝛽12: The coefficients for the interaction effects between febSD and bio
(for levels B-ATZ, BMP, and ECTZ respectively).

• 𝛽13, 𝛽14, 𝛽15: The coefficients for the interaction effects between augSD and bio
(for levels B-ATZ, BMP, and ECTZ respectively).

• 𝜖: The error term, representing the unexplained variability in the response variable.
In this multiple regression model, we aim to understand the complex and in-

teracting relationships between the response variables and the set of predictors. It
allows us to investigate not only the individual effects of the continuous predictors
on Y, but also how these effects might vary across the different bioregions.

The model therefore incorporates interaction terms between each continuous
predictor (augMean, febSD, and augSD) and the categorical variable bio. This al-
lows us to assess whether the relationships between augMean, febSD, or augSD and
Y change depending on the specific bioregion. Essentially, we are testing whether
the slopes of these relationships are different in different bioregions.



6.8. EXAMPLE 3: THE FINAL MODEL 93

Additionally, the model examines the main effects of the bioregions themselves
on Y. This means we’re testing whether the average value of Y differs significantly
across bioregions, after accounting for the influence of the continuous predictors.

This is how these different insights pertain to the model components:
• Main Effects: The coefficients for the main effects of augMean, febSD, and augSD
represent the effect of each predictor when bio is at its reference level.

• Coefficients for bio: The coefficients for bio (e.g., 𝛽4bioB-ATZ) represent the differ-
ence in the intercept for the corresponding level of bio compared to the reference
level.

• Interaction Terms: The interaction terms allow the slopes of augMean, febSD,
and augSD to vary across the different levels of bio. For example, 𝛽7(augMean ×
bioB-ATZ) represents how the effect of augMean on Y changes when bio is B-ATZ
compared to AMP.

6.8.1 State the Hypotheses

Overall hypothesis
I’ll only state the overall hypothesis for this model as the expansion of the

individual hypotheses for each predictor and interactions (all the 𝛽-coefficients in
Equation 6) is quite voluminous.

The null is that there is no relationship between the response variable Y and the
predictors (including their interactions):
• 𝐻0 ∶ 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 𝛽6 = 𝛽7 = 𝛽8 = 𝛽9 = 𝛽10 = 𝛽11 = 𝛽12 = 𝛽13 =𝛽14 = 𝛽15 = 0

The alternative is that at least one predictor or interaction term has a significant
relationship with the response variable Y:
• 𝐻𝐴 ∶ At least one 𝛽𝑖 ≠ 0 for 𝑖 ∈ {1, 2, ..., 15}
6.8.2 Fit the Model

In Section 6.6 I included the ECTZ seaweed flora in my analysis, but here I expand it
to the full dataset. To assuremyself that there is not a high degree of multicollinearity
between the predictors, I have calculated the variance inflation factors (VIFs) for the
full model (not shown). This allowed me to retain the same three predictors used in
mod1, i.e. augMean, febSD, and augSD. This is the point of departure for mod3.

Now I fit the model with those three continuous predictors and their interactions
with the categorical variable bio.

# Make a dataframe with only the relevant columns
sw_sub2 <- sw ||>

dplyr:::select(Y, augMean, febSD, augSD, bio)

# Fit the multiple linear regression model with interaction terms
full_mod3 <- lm(Y ~ (augMean + febSD + augSD) * bio, data = sw_sub2)
full_mod3a <- lm(Y ~ augMean + febSD + augSD, data = sw_sub2)
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null_mod3 <- lm(Y ~ 1, data = sw_sub2)

Model full_mod3a is similar to full_mod3 but without the interaction terms.
This will allow me to compare the two models and assess the importance of the
interactions.

# Compare the models
anova(full_mod3, full_mod3a)
> Analysis of Variance Table
>
> Model 1: Y ~ (augMean + febSD + augSD) * bio
> Model 2: Y ~ augMean + febSD + augSD
> Res.Df RSS Df Sum of Sq F Pr(>F)
> 1 954 3.5603
> 2 966 5.6890 -12 -2.1288 47.535 < 2.2e-16 *﯂﯂﯂
> ---
> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1
AIC(full_mod3, full_mod3a)
> df AIC
> full_mod3 17 -2652.498
> full_mod3a 5 -2221.852

The AIC value for full_mod3 is lower than that of full_mod3a, indicating
that including the interaction with bio is necessary. Likewise, the ANOVA test also
shows that the full model (lower residual sum of squares) is significantly better than
the reduced model.

I therefore use full_mod3 going forward. This is a complex model so I have
used the stepwise selection function, stepAIC(), to identify the most important
predictors and interactions (code and output not shown). I hoped that this might
have simplified the model somewhat, but the simplification I had hoped for did not
materialise.

6.8.3 Interpret the Model

The model summary
The model summary provides a detailed look at the individual predictors and

their interactions in the model.

# Summary of the model
summary(mod3) # full_mod3 renamed to mod3 during stepAIC()
>
> Call:
> lm(formula = Y ~ augMean + bio + augSD + febSD + augMean:bio +
> bio:augSD + bio:febSD, data = sw_sub2)
>
> Residuals:
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> Min 1Q Median 3Q Max
> -0.15399 -0.03841 -0.01475 0.03464 0.24051
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
> (Intercept) 0.0299094 0.0062756 4.766 2.17e-06 *﯂﯂﯂
> augMean 0.3441099 0.0158575 21.700 < 2e-16 *﯂﯂﯂
> bioB-ATZ -0.0459611 0.0242519 -1.895 0.058374 .
> bioBMP 0.0160756 0.0100749 1.596 0.110906
> bioECTZ -0.0015444 0.0090275 -0.171 0.864197
> augSD -0.0059012 0.0034011 -1.735 0.083044 .
> febSD -0.0006481 0.0027954 -0.232 0.816706
> augMean:bioB-ATZ -0.0461775 0.0874044 -0.528 0.597400
> augMean:bioBMP -0.2406297 0.0211404 -11.382 < 2e-16 *﯂﯂﯂
> augMean:bioECTZ -0.0607745 0.0189030 -3.215 0.001348 ﯂﯂﯂
> bioB-ATZ:augSD 0.0655983 0.0371033 1.768 0.077382 .
> bioBMP:augSD 0.0410220 0.0114706 3.576 0.000366 *﯂﯂﯂
> bioECTZ:augSD 0.0280513 0.0053752 5.219 2.21e-07 *﯂﯂﯂
> bioB-ATZ:febSD 0.0409425 0.0818927 0.500 0.617223
> bioBMP:febSD 0.0056433 0.0150126 0.376 0.707070
> bioECTZ:febSD 0.0502867 0.0082266 6.113 1.43e-09 *﯂﯂﯂
> ---
> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Residual standard error: 0.06109 on 954 degrees of freedom
> Multiple R-squared: 0.7797, Adjusted R-squared: 0.7762
> F-statistic: 225.1 on 15 and 954 DF, p-value: < 2.2e-16

The first thing to notice is that the model function has been rewritten in the
forward selection process (but none of the variables were deemed insignificant and
removed):
• Initial specification: Y ~ (augMean + febSD + augSD) * bio
• Specification after stepAIC(): Y ~ augMean + bio + augSD + febSD +
augMean:bio + bio:augSD + bio:febSD
Functionally, these two are identical, but the order in which the terms are pre-

sented differs. Although this has affected the order in which the coefficients are
presented in the summary output, the coefficients are the same. The coefficients are:
• (Intercept): This is the estimated average value of Ywhen all predictor variables
are zero and the observation is in the reference bioregion (AMP).

• Main Effects:
– augMean: For every one-unit increase in augMean, Y increases by 0.3441, on
average, assuming all other predictors are held constant. This effect is highly
significant.

– augSD and febSD: The main effects of these variables are not statistically sig-
nificant, suggesting they might not have a direct impact on Y when averaged
across all bioregions.

– bioB-ATZ, bioBMP, bioECTZ: These coefficients represent the average dif-
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ference in Y between each of these bioregions and the reference bioregion,
when the continuous predictors are held at zero.

• Interaction Effects:
– augMean interactions: The significant interactions of augMean with biore-
gion indicate that the effect of augMean on Y varies across bioregions. No-
tably, the interaction with bioBMP has a strong, significant negative effect,
suggesting that the positive effect of augMean is much weaker in this biore-
gion compared to the reference.

– augSD and febSD interactions: These interactions with bioregions are some-
times significant, providing good support for the alternative hypothesis that
the effects of augSD and febSD on Y depend on the specific bioregion.

Since dummy coding returns differences with respect to reference levels, how
would we calculate the actual coefficients for, say, augMean? Since there are signifi-
cant interaction effects, wemust consider themain effect of augMean in conjunction
with bioregion.

For bio = B-ATZ:
• 𝛽augMean + 𝛽augMean:bioB-ATZ = 0.3441099 + (−0.0461775) = 0.2979324

For bio = BMP:
• 𝛽augMean + 𝛽augMean:bioBMP = 0.3441099 + (−0.2406297) = 0.1034802

For bio = ECTZ:𝛽augMean + 𝛽augMean:bioECTZ = 0.3441099 + (−0.0607745) = 0.2833354
The respective SEs for these coefficients can be calculated using the formula for

the standard error of the sum of two variables. For example:
• 𝑆𝐸augMean = √𝑆𝐸2augMean + 𝑆𝐸2augMean:bio

The ANOVA table
The ANOVA table assesses the overall significance of groups of predictors or the

sequential addition of predictors to the model.

anova(mod3)
> Analysis of Variance Table
>
> Response: Y
> Df Sum Sq Mean Sq F value Pr(>F)
> augMean 1 9.9900 9.9900 2676.902 < 2.2e-16 *﯂﯂﯂
> bio 3 1.1901 0.3967 106.296 < 2.2e-16 *﯂﯂﯂
> augSD 1 0.1393 0.1393 37.331 1.451e-09 *﯂﯂﯂
> febSD 1 0.0053 0.0053 1.422 0.2334
> augMean:bio 3 0.7910 0.2637 70.647 < 2.2e-16 *﯂﯂﯂
> bio:augSD 3 0.3426 0.1142 30.602 < 2.2e-16 *﯂﯂﯂
> bio:febSD 3 0.1401 0.0467 12.517 4.953e-08 *﯂﯂﯂
> Residuals 954 3.5603 0.0037
> ---
> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ANOVA table shows that the model is highly significant, with very low
p-values throughout (< 0.0001). This indicates that the model as a whole is a good
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fit for the data.

6.8.4 Reporting

Here is what the reporting of the findings could look like in the Results section in
your favourite journal.

Results
A multiple linear regression model examining the effects of the August climato-

logical mean temperature (augMean), the August and February climatological SD of
temperature (augSD and febSD, respectively), and the bioregion classification (bio)
on the response variable, the Sørensen dissimilarity (Y), including their interaction
terms, revealed several significant findings (Table 6.1). This model allows a separate
regression slope for each predictor within the bioregions (Figure 6.7). The model
explains a substantial portion of the variance in Y (𝑅2 = 0.780, adjusted 𝑅2 = 0.776),
and the overall model fit is highly significant (𝐹(15, 954) = 225.1, 𝑝 < 0.0001).

Table 6.1. Summary of the multiple linear regression model examining the effects
of augMean, augSD, febSD, and bio on Y.

Coefficient Estimate Std. Error t value P-value
(Intercept) 0.0299 0.0063 4.766 < 0.0001 ***
augMean 0.3441 0.0159 21.700 < 0.0001 ***
bioB-ATZ -0.0460 0.0243 -1.895 > 0.05
bioBMP 0.0161 0.0101 1.596 > 0.05
bioECTZ -0.0015 0.0090 -0.171 > 0.05
augSD -0.0059 0.0034 -1.735 > 0.05
febSD -0.0006 0.0028 -0.232 > 0.05
augMean:bioB-ATZ -0.0462 0.0874 -0.528 > 0.05
augMean:bioBMP -0.2406 0.0211 -11.382 < 0.0005 ***
augMean:bioECTZ -0.0608 0.0189 -3.215 < 0.005 **
bioB-ATZ:augSD 0.0656 0.0371 1.768 > 0.05
bioBMP:augSD 0.0410 0.0115 3.576 < 0.0005 ***
bioECTZ:augSD 0.0281 0.0054 5.219 < 0.0005 ***
bioB-ATZ:febSD 0.0409 0.0819 0.500 > 0.05
bioBMP:febSD 0.0056 0.0150 0.376 > 0.05
bioECTZ:febSD 0.0503 0.0082 6.113 < 0.0005 ***

The main effect of augMean was highly significant (Estimate = 0.3441, 𝑝 <0.0001), indicating a strong positive relationship with Y. The interaction term
augMean:bioBMP (Estimate = -0.2406, 𝑝 < 0.0001) and augMean:bioECTZ (Es-
timate = -0.0608, 𝑝 < 0.005) were also significant, suggesting that the effect of
augMean on Y varies significantly for BMP and ECTZ bioregions compared to the
reference category (AMP). The bioBMP (Estimate = 0.0161, 𝑝 > 0.05) and bioECTZ
(Estimate = -0.0015, 𝑝 > 0.05) terms were not significant, indicating no significant
difference from AMP.
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Figure 6.7. Individual linear regression fit to the variables augMean, febSD, and
augSD for each bioregion as predictors of the seaweed species composition.

For augSD, the main effect was not significant (Estimate = -0.0059, 𝑝 > 0.05).
Significant interaction terms for bioBMP:augSD (Estimate = 0.0410, 𝑝 < 0.001) and
bioECTZ:augSD (Estimate = 0.0281, 𝑝 < 0.0001) indicate that the effect of augSD
on Y varies by bioregion.

The main effect of febSDwas not significant (Estimate = -0.0006, 𝑝 > 0.05), sug-
gesting no direct relationshipwithY. However, the interaction termbioECTZ:febSD
(Estimate = 0.0503, 𝑝 = 0.0001) was significant, indicating that the effect of febSD
on Y differs for the ECTZ bioregion.

The ANOVA further highlights the overall significance of each predictor.
augMean had a highly significant contribution to the model (𝐹 = 2676.902,𝑝 < 0.0001), as did bio (𝐹 = 106.296, 𝑝 < 0.0001), and their interactions
(augMean:bio, 𝐹 = 70.647, 𝑝 < 0.0001; bio:augSD, 𝐹 = 30.602, 𝑝 < 0.0001;
bio:febSD, 𝐹 = 12.517, 𝑝 = 4.953 × 10−8). The main effect of augSD was also
significant (𝐹 = 37.331, 𝑝 = 1.451 × 10−9), while febSD did not significantly
contribute to the model on its own (𝐹 = 1.422, 𝑝 = 0.2334).

These findings suggest that the effects of augMean, augSD, and febSD on Y
are influenced by the bioregional classification, with significant variations in the
relationships depending on the specific bioregion.

6.9 alternative categorical variable coding schemes (contrasts)

Throughout the book, we have used dummy variable coding the specify the cat-
egorical variables in the multiple linear regression models. But, should dummy
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variable coding not be to your liking, there are other coding schemes that can be
used to represent the categorical variables. These alternative coding schemes are
known as contrasts. The choice of contrast coding can affect the interpretation of
the regression coefficients.

I’ll provide some synthetic data to illustrate a few different contrasts. The data
consist of a continuous variable x, a categorical variable cat_var with four levels,
and a response variable y that has some relationship with x and cat_var. I’ll use
dummy variable coding as the reference (haha!).

head(data)
> y x cat_var
> 1 0.6667876 -0.56047565 B
> 2 1.3086873 -0.23017749 B
> 3 0.4496192 1.55870831 D
> 4 2.1326402 0.07050839 A
> 5 -2.8608771 0.12928774 D
> 6 0.1497346 1.71506499 D

Categorical variable coding (any scheme) only affects the interpretation of the
categorical variable main effects and their interactions, so I’ll not discuss the coeffi-
cient associated with the continuous variable x (the slope) in the model throughout
the explanations offered below.

Dummy Variable Coding (Treatment Contrasts)
This is the most commonly used coding scheme, and lm()’s default. One level

is the reference category (A) and the other levels are compared against it. Contrast
matrices can be assigned and/or inspected using the contrasts() function. For
the dummy coding, the reference level A will remain 0 and the other levels will be
independently coded as 1 in three columns. You’ll now understand why, when we
have four levels within a categorical variable, we only need three dummy variables
to represent them.

# Dummy coding (treatment coding) ..... default
contrasts(data$cat_var)
> B C D
> A 0 0 0
> B 1 0 0
> C 0 1 0
> D 0 0 1

When we have four levels in a categorical variable, there are three dummy
variable columns in the contrast matrix. The first row, consisting of all zeros (0, 0,
0), represents the reference level, which in this case is A. The other rows represent
the different levels of the categorical variable, with a 1 in the respective column
indicating that level. For example, level A is represented by (0, 0, 0), B by (1, 0, 0), C
by (0, 1, 0), and D by (0, 0, 1). In the regression model, these contrasts are used to
estimate the differences between each level and the reference level. Specifically, the
first contrast column indicates that the coefficient for this column will represent
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the difference between the mean of the response variable for level B and the mean
for the reference level A, holding all other variables constant. Similarly, the second
and third columns represent the differences between levels C and A, and D and A,
respectively. This coding allows for a straightforward interpretation of how each
level of the categorical variable affects the response variable relative to the reference
level.

model_dummy <- lm(y ~ x + cat_var, data = data)
summary(model_dummy)
>
> Call:
> lm(formula = y ~ x + cat_var, data = data)
>
> Residuals:
> Min 1Q Median 3Q Max
> -1.6615 -0.6297 -0.1494 0.4978 2.9305
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
> (Intercept) 2.8176 0.1635 17.232 < 2e-16 *﯂﯂﯂
> x 1.8274 0.1040 17.572 < 2e-16 *﯂﯂﯂
> cat_varB -1.7201 0.2499 -6.883 6.24e-10 *﯂﯂﯂
> cat_varC -3.9056 0.2678 -14.586 < 2e-16 *﯂﯂﯂
> cat_varD -5.4880 0.2512 -21.850 < 2e-16 *﯂﯂﯂
> ---
> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Residual standard error: 0.9246 on 95 degrees of freedom
> Multiple R-squared: 0.887, Adjusted R-squared: 0.8822
> F-statistic: 186.4 on 4 and 95 DF, p-value: < 2.2e-16

The model summary shows that the coefficients for cat_varB, cat_varC, and
cat_varD represent the differences in the mean of the response variable y between
the reference category A and categories B, C, and D, respectively, while controlling
for the effect of the continuous variable x.

Interpretation:
• (Intercept) (2.8176): The intercept represents the estimated mean value of the
response (y) when x is zero and the categorical variable is at the reference level A.
This is the baseline from which other categories are compared.

• x (1.8274): For each one-unit increase in x, y is expected to increase by 1.8274 units,
holding the categorical variable constant. This effect is consistent across all levels
of the categorical variable because the model does not have an interaction effect
present.

• cat_varB (-1.7201): On average, the value of y for level B is 1.7201 units lower than
that for the reference level A, when x is held constant. This corresponds to the (1,
0, 0) row in the contrast matrix.

• cat_varC (-3.9056): Similarly, on average, the value of y for level C is 3.9056 units
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lower than that for the reference level, when x is held constant. This corresponds
to the (0, 1, 0) row in the contrast matrix.

• cat_varD (-5.4880): Lastly, on average, the value of y for level D is 5.4880 units
lower compared to the reference , when x is held constant. This is row (0, 0, 1)
row in the contrast matrix.
All these coefficients are highly significant (p < 0.0001), indicating strong evi-

dence for differences between each category and the reference category A.
The model explains a large proportion of the variance in y (Adjusted R-squared:

0.8822), suggesting a good fit. The F-statistic (186.4) with a very low p-value (< 0.0001)
indicates that the model as a whole is statistically significant.

If you want to change the reference level, you can use the relevel() function.
For example, to change the reference level of cat_var variable to C_2, you can use:

# Set "C" as the reference level for cat_var
data$cat_var <- relevel(data$cat_var, ref = "C")
contrasts(data$cat_var)
> A B D
> C 0 0 0
> A 1 0 0
> B 0 1 0
> D 0 0 1

This may be useful when you want to compare the other levels to a different
reference level.

Effect Coding (Sum Contrasts)
This coding method compares the levels of a categorical variable to the overall

mean of the dependent variable. The coefficients represent the difference between
each level and the grand mean. Instead of using 0 and 1 as we did with dummy
variable coding, effect coding uses -1, 0, and 1 to represent the different levels of the
categorical variable.

# Reset the reference level to "A"
data <- data.frame(y, x, cat_var)

# Effect coding
contrasts(data$cat_var) <- contr.sum(4)
contrasts(data$cat_var)
> [,1] [,2] [,3]
> A 1 0 0
> B 0 1 0
> C 0 0 1
> D -1 -1 -1

In effect coding (sum contrasts), each level of the categorical variable is compared
to the overall mean rather than a specific reference category. This contrast matrix
with four levels (A, B, C, D) and three columns can be interpreted as follows:
• Level A (1, 0, 0): The first row indicates that level A is included in the first contrast
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(cat_var1), which means the mean of level A is being compared to the overall
mean. Since the other columns are zero, level A does not contribute to the other
contrasts.

• Level B (0, 1, 0): The second row indicates that level B is included in the second
contrast (cat_var2). The mean of level B is being compared to the overall mean,
and it does not contribute to the other contrasts.

• Level C (0, 0, 1): The third row indicates that level C is included in the third contrast
(cat_var3). The mean of level C is being compared to the overall mean, and it
does not contribute to the other contrasts.

• Level D (-1, -1, -1): The fourth row is a balancing row, ensuring that the sum of the
contrasts for each level equals zero. This indicates that level D is being compared
to the overall mean indirectly by balancing the contributions of levels A, B, and C.

model_effect <- lm(y ~ x + cat_var, data = data)
summary(model_effect)
>
> Call:
> lm(formula = y ~ x + cat_var, data = data)
>
> Residuals:
> Min 1Q Median 3Q Max
> -1.6615 -0.6297 -0.1494 0.4978 2.9305
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
> (Intercept) 0.03921 0.09452 0.415 0.679
> x 1.82741 0.10400 17.572 < 2e-16 *﯂﯂﯂
> cat_var1 2.77844 0.14968 18.563 < 2e-16 *﯂﯂﯂
> cat_var2 1.05832 0.16329 6.481 4.04e-09 *﯂﯂﯂
> cat_var3 -1.12720 0.17765 -6.345 7.53e-09 *﯂﯂﯂
> ---
> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Residual standard error: 0.9246 on 95 degrees of freedom
> Multiple R-squared: 0.887, Adjusted R-squared: 0.8822
> F-statistic: 186.4 on 4 and 95 DF, p-value: < 2.2e-16

Interpretation:
• (Intercept) 0.03921: The intercept represents the grand mean of the response
variable (y). Since the intercept is not statistically significant (p> 0.05), it indicates
that the overall mean is not significantly different from zero when considering
the average effect of all levels of the categorical variable.

• x (1.82741): For each one-unit increase in (x), the response (y) increases by approx-
imately 1.82741 units. This effect is highly significant (p < 0.0001).

• cat_var1 (2.77844): Level A has a mean (y) that is 2.77844 units higher than the
grand mean. This effect is highly significant (p < 0.0001).

• cat_var2 (1.05832): Level B has a mean (y) that is 1.05832 units higher than the
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grand mean. This effect is also highly significant (p < 0.0001).
• cat_var3 (-1.12720): Level C has a mean (y) that is 1.12720 units lower than the
grand mean. This effect is highly significant (p < 0.0001).
All these coefficients are highly significant (p < 0.0001), indicating strong evi-

dence for differences between each category and the overall mean of all levels.
The model explains a large proportion of the variance in y (Adjusted R-squared:

0.8822), suggesting a good fit. The F-statistic (186.4) with a very low p-value (< 0.0001)
indicates that the model as a whole is statistically significant.

Helmert Coding
Helmert coding compares each level of a categorical variable to the mean of the

subsequent levels. It is useful for testing ordered differences.

# Helmert coding
contrasts(data$cat_var) <- contr.helmert(4)
contrasts(data$cat_var)
> [,1] [,2] [,3]
> A -1 -1 -1
> B 1 -1 -1
> C 0 2 -1
> D 0 0 3

The contrast matrix for a categorical variable with four levels (A, B, C, D) and
three columns can be interpreted as follows:
• Level A (-1, -1, -1): Level A is compared to the mean of levels B, C, and D. The
negative values indicate that level A is being subtracted in these comparisons.

• Level B (1, -1, -1): Level B is compared to the mean of levels C and D. The positive
value in the first column indicates that level B is being added in this comparison.

• Level C (0, 2, -1): Level C is compared to the mean of level D. The positive value in
the second column indicates that level C is being added in this comparison, while
the negative value in the third column is part of the comparison for subsequent
levels.

• Level D (0, 0, 3): Level D is compared on its own in the final contrast. The positive
value in the third column indicates that level D is being added in this comparison.

model_helmert <- lm(y ~ x + cat_var, data = data)
summary(model_helmert)
>
> Call:
> lm(formula = y ~ x + cat_var, data = data)
>
> Residuals:
> Min 1Q Median 3Q Max
> -1.6615 -0.6297 -0.1494 0.4978 2.9305
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
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> (Intercept) 0.03921 0.09452 0.415 0.679
> x 1.82741 0.10400 17.572 < 2e-16 *﯂﯂﯂
> cat_var1 -0.86006 0.12495 -6.883 6.24e-10 *﯂﯂﯂
> cat_var2 -1.01519 0.08206 -12.371 < 2e-16 *﯂﯂﯂
> cat_var3 -0.90319 0.05477 -16.491 < 2e-16 *﯂﯂﯂
> ---
> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Residual standard error: 0.9246 on 95 degrees of freedom
> Multiple R-squared: 0.887, Adjusted R-squared: 0.8822
> F-statistic: 186.4 on 4 and 95 DF, p-value: < 2.2e-16

Interpretation:
• (Intercept) (0.03921): The grand mean of y when x is zero.
• x (1.82741): For each unit increase in x , y increases by 1.82741 units.
• cat_var1 (-0.86006): Themean of levelA is 0.86006 units lower than the combined
mean of levels B, C, and D.

• cat_var2 (-1.01519): The mean of level B is 1.01519 units lower than the combined
mean of levels C and D.

• cat_var3 (-0.90319): The mean of level C is 0.90319 units lower than the mean of
level D.
The interpretation of the overall model remains more-or-less similar to before:
All these coefficients are highly significant (p < 0.0001), indicating strong evi-

dence for differences between each level and the overall mean of all subsequent
levels.

The model explains a large proportion of the variance in y (Adjusted R-squared:
0.8822), suggesting a good fit. The F-statistic (186.4) with a very low p-value (< 0.0001)
indicates that the model as a whole is statistically significant.

6.10 exercises

Exclamation Task G

Use the data loaded at the start of this chapter for this task.
In this task you will develop data analysis, undertake model building, and
provide an interpretation of the findings. Your goal is to explore the species
composition and assembly processes of the seaweed flora around the coast of
South Africa. See [3] for more information about the data and the analysis.
a. Analysis: Please develop multiple linear regression models for the sea-
weed species composition (𝛽sim and 𝛽sne, i.e. columns called Y1 and Y2,
respectively) using the all the predictors in this dataset. At the end, the
final model(s) that best describe(s) the species assembly processes operat-
ing along the South African coast should be presented. The final model
may/may not contain all the predictors in the dataset, and it is your goal to
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justify the variable and model selection.
• Accomplishing a)will require that youwork through thewholemodel-
building process as outlined in the chapter. This includes the following
steps:
– Data exploration and visualisation (EDA)
– Model building (providing hypothesis statements, variable se-
lection using VIF and forward selection, comparisons of nested
models, justifications for model selection)

– Model diagnostics
– Explanation of summary() and anova() outputs
– Producing the Results section
– [60%]

b. Interpretation: Once you have arrived at the best model, discuss your
findings in the light of the appropriate ecological hypotheses that explain
the relationships between the predictors and the seaweed species composi-
tion. Include insights drawn from the analysis of 𝛽sør that I developed in
this chapter, and also rely on the theory you have developed for the lecture
material the class presented in Task A2.

• Accomplishing b) is thus all about model interpretation and dis-
cussing the ecological relevance of the results.

• [40%]
The format of this task is a Quarto file that will be converted to an HTML file.
The HTML file will contain the graphs, all calculations, and the text sections.
The task should be written up as a publication (i.e. use appropriate headings)
using a journal style of your choice. Aside from this, there are no limitations.


