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Nonlinear Models

Nonlinear regression models are used when the relationship between the response
variable (dependent variable, Y) and the predictor variables (independent variables,
X) is not linear. In other words, they are employed when a straight line is not an
appropriate representation of the relationship between the variables.

As we have seen in Section 4.1, polynomial regressions provide a nonlinear
relationship between the response and predictor variables (as seen in the regression
line fit to the data, Figure 8.1 A), but they are considered linear models because
the parameters are estimated using linear least squares. Another type of nonlinear
model is a semi-parametric model where the relationship between the response
and predictor variables is described by a function that includes both parametric
and non-parametric components. An example of a semi-parametric model is the
generalised additive model (GAM) that includes a non-parametric component in
the form of a spline function (Chapter 12; Figure 8.1 B).

The type of nonlinear model I cover in this chapter is a parametric model where
the relationship between the response and predictor variables is described by a
specific nonlinear function (Figure 8.1 C). The model still assumes that the residuals
are normally distributed and exhibit homoscedasticity. The model parameters are
estimated by minimising the sum of squared differences between the observed and
predicted values, a method commonly referred to as nonlinear least squares (NLS)
regression. This is the term I will adopt.

The primary purpose of nonlinear regression is to derive a formula (model),
analyse data, and predict new values where the phenomenon exhibits a nonlinear
causal pattern or behaviour. Nonlinear models include a variety of response forms,
such as exponential growth models, logistic growth models, and other mechanis-
tic models derived from physical, chemical, or biological processes. Examples of
such models include trigonometric, logarithmic, and user-defined functions like
the von Bertalanffy model or seasonal cycle represented by a sine curve (Figure 8.1
C). These models are explicitly nonlinear in both their form and parameters. Un-
like polynomial regression, where only the terms of X are transformed, nonlinear
models involve an entirely nonlinear function relating X and Y. They are often used
when there is a theoretical basis for the specific form of the relationship, providing
interpretable parameters that carry specific meanings based on the underlying the-
ory, making them useful for detailed applications where the dynamics of the system
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FIGURE 8.1. Nonlinear regression models fitted to simulated data. A) a cubic poly-
nomial model, B) a GAM with a thin plate regression spline, and C) a NLS sine
curve as a seasonal cycle.

are well-understood.
A general formula for a nonlinear regression model is:

Y = f(X;:6) +¢ @

Where:

» Y; is the response variable for the i-th observation,
+ X; is the predictor variable for the i-th observation,
» f(X;;0) is a nonlinear function of X; parameterised by the vector 6,
« Ois the vector of parameters to be estimated, and
« ¢; is the error term for the i-th observation and is assumed to be i.i.d. with a normal
distribution.
An example of a specific nonlinear regression model is the exponential growth
model:

Y, = aefXi 4 ¢ )

Where:
» aand g are the parameters to be estimated,
« eis the base of the natural logarithm, and
* ¢; is the error term for the i-th observation.
This model is nonlinear in the parameters « and 3, and it describes an exponential
relationship between the predictor X and the response Y.
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FIGURE 8.2. Plot of growth rate data fitted with a von Bertalanffy model, a first-
(straight line), second- and third-order polynomial, and a GAM.

8.1 EXTENSION OF NONLINEAR MODELS

Like linear models, nonlinear models have also been extended to include multiple
predictors, interactions, and other terms to capture complex relationships between
the variables. The first type of more complex nonlinear models accommodates
a wider range of data distributions by generalising to non-normal error distribu-
tions through link functions. These models are called generalised nonlinear models
(GNLMs). The examples of GLMs in Chapter 7 should prepare you sufficiently to
handle nonlinear models too. The other type deals with hierarchical data structures
and incorporates fixed and random effects. As such, you can also correctly model
repeated measures and longitudinal, and nested (grouped) designs. These hierarchi-
cal models are called nonlinear mixed models (NLMMs). Examples of NLMMs are
provided in Section 8.5.2.3 and Section 8.5.3.

8.2 CONSIDERATIONS FOR MODEL SELECTION

There are a few practical considerations to keep in mind when choosing a suitable
nonlinear (in shape) model. Sometimes different models can provide similar fits to
the same data, but they may have different implications for the interpretation of
the relationship between the variables. See for example Figure 8.2. The plot shows
growth rate data fitted with a first-, second- and third-order polynomial, a GAM,
and a NLS von Bertalanffy model. To the untrained eye and inexperienced biologist,
all models seem to provide a good fit to the data, but they do differ subtly in the
shape of the fitted curve. The von Bertalanffy model is a saturating growth model (it
reaches a plateau), while the polynomial models and the GAM are more flexible
and can capture a wider range of shapes. The choice of model should be guided
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by the underlying biological or physical processes that generated the data and the
research question you are trying to answer.

Regression analysis will often require that we decide among polynomial regres-
sions, nonlinear models, GAMs, or some of the more complex hierarchical models,
and there are various considerations to keep in mind when decising which model to
use. I will cover some of these in the next sections.

Data Pattern

Known mechanistic process

Unknown mechanism Theoretical Model Exists?
/N°/ Yes
Exploratory Analysis Nonlinear Model

Pattern Complexity

Simple curve
Complex/unknown Polynomial Check
More complex 2-3 bends max

GAM Initial Fit Polynomial Regression

Sample Size

Small n Large n

Reduce Flexibility Keep Flexibility

8.2.1 Linearity vs. Nonlinearity

The first fork in our decision making process involves seeing if the relationship
between the variables is linear or can be adequately approximated by a polynomial
function, polynomial regression is a suitable choice. Nonlinear models or GAMs may
be more appropriate if the relationship is nonlinear and does not follow a specific
polynomial form. In Figure 8.2, it is obvious that the straight line model is not a
good fit for the data, but the second- and third-order polynomial models, the GAM,
and the von Bertalanffy model all provide better fits.
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8.2.2  Complexity of the Relationship

Polynomial regression is limited in its ability to capture complex nonlinear rela-
tionships, especially those with more bends, peaks, or valleys than a polynomial
of order <3 (or even 4 at a push) can capture. Another consideration is the process
the data represent: if it is inherently nonlinear according to a known function such
as exponential growth or decay, seasonal sinusoidal patterns, or logistic growth,
then nonlinear models or GAMs are more flexible and can capture a wider range of
nonlinear responses. In Figure 8.2, the von Bertalanffy model is a saturating growth
model, which is a known biological process that can be captured by a nonlinear
model. The 3rd-order polynomial model also seems to capture a saturating growth
pattern, but it also somewhat influenced by the dip in the raw data around 12.5 years
(in addition to some other nuances), but this is likely due to some random variation
and is not part of the growth response.

8.2.3 Interpretability vs. Flexibility

Polynomial regression provides coefficients that relate to the powers of the predictor
variables, but the interpretation of the § parameters is not as intuitive as in a linear
model of order 1. In contrast, nonlinear models and GAMs offer greater flexibility in
capturing complex patterns. GAMs may lack direct interpretability of the coefficients,
but the nonlinear model offers coefficients that can be interpreted in the context of
the model’s structure. In Figure 8.2, the von Bertalanffy model has a clear biological
interpretation (see Section 8.6), while the 3rd-order polynomial model and the GAM
are more flexible and can capture a wider range of shapes (it follows the dips and
peaks in the raw data closer). The 2nd-order polynomial does not fit the data as well
at very low ages at 20 year, but it is still a better fit than the linear model.

8.2.4 Overfitting Concerns

Polynomial regression with high-degree polynomials can lead to overfitting, espe-
cially when the model complexity exceeds the underlying data patterns. Nonlinear
models and GAMs can also overfit if not properly regularised or constrained. These
insights can be seen when we examine the summaries of the regression fits, and
can be formally assessed using cross-validation or information criteria. In Figure 8.2,
the 3rd-order polynomial model seems to capture some of the random variation in
the data, which may be an indication of overfitting. The GAM also seems to cap-
ture some of the random variation, but it is less pronounced than in the 3rd-order
polynomial model.

8.2.5 Data Size and Complexity

For small to moderate-sized datasets with complex nonlinear relationships, GAMs
may be more suitable due to their flexibility and ability to capture intricate patterns.
For simpler relationships or when interpretability is important, nonlinear regression
(with mechanistically-informed parameters) may be preferred. These are not of
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concern in Figure 8.2.
8.2.6 Model Complexity and Assumptions

Polynomial regression assumes a specific polynomial form for the relationship,
which may not hold in practice. Nonlinear models and GAMs are more flexible and
do not always impose strict parametric assumptions (see Section 8.3), making them
more robust to deviations from the assumed form. A detailed assessment of the
model assumptions and the complexity of the relationship can help guide the choice
of model. We need to add to this our biologist specialist knowledge to make the best
choice.

8.2.7 Computational Considerations

Polynomial regression is relatively simple to implement and computationally ef-
ficient, especially for low-degree polynomials. Nonlinear models and GAMs may
require more computational resources, especially for large datasets or complex
models. Not a concern for the models represented in Figure 8.2.

8.3 REQUIREMENTS AND ASSUMPTIONS

Polynomial regression, nonlinear regression, and GAMs are built upon the principles

of linear regression; therefore, the fundamental assumptions of normality and

homoscedasticity of residuals usually still apply. Specifically, these models assume
that the residuals are independent and identically distributed (i.i.d.), which implies
that they are normally distributed with a constant variance (homoscedasticity).

However, the specifics can vary depending on the model and the distribution of

the response variable. Of course, there is also the requirement for the response

variable to be continuous and independent. These assumptions help ensure that the
error terms (residuals) in the model are well-behaved so that reliable inference and
predictions can be obtained.

Nuances:

+ Polynomial Regression: While a type of nonlinear regression, polynomial mod-
els are still linear in their parameters. This means that they are more bound to
the classic regression assumptions and can be more sensitive to violations.

+ GAMs: Offer more flexibility in handling nonlinear relationships. Depending on
the distributions used for the outcome variable and the link functions employed,
GAMs can potentially relax some of the strict normality assumptions.

» Nonlinear Models in General: Some truly nonlinear models (like those based
on exponential or logarithmic functions) may have inherently different error
structures and may not strictly require the same assumptions of normality and
homoscedasticity. However, these models come with their own set of assumptions
and considerations.

Important considerations:

» Diagnostic Checks: Regardless of the model type, it’s essential to perform residual

diagnostics to assess if assumptions are met. Visualisations (e.g., histograms, Q-Q
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plots, residuals vs. fitted plots) are well-known tools.

« Transformations: If violations of assumptions are found, data transformation
techniques (e.g., Box-Cox, log) could be considered to improve model validity.

+ Generalised Linear Models (GLMs): An important class of models designed
to handle various non-normal responses (e.g., count, binary) while extending
the linear modeling framework. GLMs are good alternative to both polynomial
regression and GAMs in certain contexts.

« Mixed models: Linear Mixed Models (LLMs), Generalised Linear Mixed Models
(GLMMSs), and Generalised Nonlinear Models (GNLMSs) can be used to account
for dependencies in the data, such as repeated measures or hierarchical structures.
GAMs also accommodate mixed data structures.

The rest of this chapter will focus on the practical aspects of fitting polynomial
regression models and nonlinear regressions in R. GAMs will be covered in a separate
chapter due to their unique characteristics and implementation details.

8.4 R FUNCTIONS AND PACKAGES
8.4.1 Polynomial Regression

To fit a polynomial model in R, use the simple linear regression function 1m() to fit
the model. The purpose of poly() is to generate polynomial terms of a specified
degree. The basic form is:

poly_model <- lm(y ~ poly(x, degree = 2), data = data)

GLMs are a generalisation of ordinary linear regression that allows for the
response variable to have non-Gaussian error distributions such as one of the expo-
nential family distributions (e.g., binomial, Poisson, gamma). These distributions
are accommodated via so-called link functions within the GLM framework. The
most common R function for fitting GLMs is glm( ).

Mixed models that include random and fixed effects (see box ‘Fixed and Random
Effects’) are also available. These are necessary for the analysis of data that have
correlations within groups or hierarchies (e.g., repeated measures' or the inclusion of
grouped variables). Commonly used are 1mer () for LLMs and glmer( ) for GLMMs.
Both functions are in the Ime4 package. Another package that accommodates LLMs
is nlme and its Tme () function. It has somewhat different capabilities and syntax
compared to Imeq.

i Fixed and Random Effects

Random effects and fixed effects are used in regression models to account for
different sources of variation in the data.

1. Repeated measures are multiple observations taken on the same subject or unit over time or under
different conditions. Sometimes this is called longitudinal data.
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Fixed effects are variables or factors that represent sources of variation that
are of primary interest in the study or that have a finite and fixed number of
levels or categories. These effects are assumed to have an influence on the
mean response. Examples of fixed effects include:

« Treatment groups in an experiment (e.g., fertiliser A, fertiliser B, control)
« Categorical variables (e.g., sex, age group, species)

« Continuous variables (e.g., time, temperature, concentration)

The coefficients associated with fixed effects are estimated and interpreted as
the primary effects of interest in the model.

Random effects are variables or factors that represent sources of variation that
are not of primary interest but need to be accounted for in the model. These
effects are assumed to be randomly sampled from a larger population, and
their levels are theoretically infinite or too numerous to be modeled as fixed
effects. Examples of random effects include:

« Subjects or individuals in a study (e.g., individual plants or animals)

« Clusters or groups (e.g., plots, aquaria, transects)

« Repeated measures or time points within subjects

Random effects are used to model the correlation or dependence among ob-
servations within the same cluster, subject, or time series. They allow for
subject-specific or cluster-specific adjustments to the overall model, account-
ing for the fact that observations within the same group are more similar than
observations from different groups.

In LMMs and GLMMs, both fixed and random effects are included. The fixed
effects represent the primary effects of interest and the random effects account
for the correlation or dependence within clusters or subjects.

8.4.2 Nonlinear Regression

In R, nonlinear regressions can be performed using the nls() function in the base
package. It uses iterative algorithms to minimise the residual sum of squares and
find the best-fit parameters for the user-specified nonlinear model.

The nls() function is most frequently used to fit user-specified nonlinear func-
tions. The basic syntax is:

nls_model <- nls(y ~ f(x, thetal, theta2, ...), data = data,
start = list(thetal = valuel, theta2 = value2, ...))

GNLMs extend nonlinear models by allowing the response variable to follow one
of the exponential family distributions, such as binomial, Poisson, or gamma, etc.
This is done through a link function that relates the mean of the distribution to the
predictors through the nonlinear model. GNLMs are fit using maximum likelihood
estimation, which is flexible enough to handle various types of error distribution
and link functions. The gnm package rovides the gnm( ) function designed for this
purpose.
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For data with dependencies within groups or hierarchies (such as in longitudinal
studies), NLMMs are available within nlme (). NLMMs incorporate fixed effects
(associated with the nonlinear terms) and random effects (to account for correlation
and variation within groups).

8.5 EXAMPLE: ALGAL NUTRIENT UPTAKE KINETCIS

We can measure algal nutrient uptake rates using two types of experiments: mul-
tiple flask experiments and perturbation experiments. The fundamental concept
underlying both methods is to introduce a known quantity of nutrients (termed
the substrate) into a flask or a series of flasks and then measure the rate of nutri-
ent uptake (V) at different substrate concentrations ([S]). We calculate the nutrient
uptake rate as the change in nutrient concentration in the flask over a predefined
time interval (V' = A[S]/At). Consequently, both experiments generate data that
relate the nutrient uptake rate to the corresponding substrate concentration. The
primary difference between the two methods lies in the experimental setup and the
data analysis.

In the multiple flask method, we prepare a series of flasks, each containing a
different initial concentration of the substrate nutrient to span the range typically
encountered by the specimen in its natural environment. We then measure the
nutrient uptake rate in each individual flask over a specific time period, for example
by taking measurements at the start (¢ = 0) and end (¢t = 30 minutes) of the
incubation. We calculate the change in substrate concentration over this time interval
in each flask to determine the corresponding nutrient uptake rate. The resulting data
from this method therefore consists of the different initial substrate concentrations
used in each flask, paired with their respective measured nutrient uptake rates over
the incubation period.

The perturbation method uses a single flask to which we add a high initial
concentration of the substrate nutrient, set at a level that is ecologically meaningful
and relevant to the study system. Instead of using multiple flasks, we measure the
change in the remaining substrate concentration at multiple time points within
this same flask, for example by taking samples every 10 or 20 minutes until all
the substrate is depleted, say at 120 minutes. We calculate the change in substrate
concentration between each successive time point to determine the corresponding
nutrient uptake rate over that time interval. The resulting data, therefore, consist of
a time series of substrate concentrations at each measurement time point, paired
with the nutrient uptake rates calculated over the periods between those time points.

The important differences between the multiple flask and perturbation experi-
ments are summarised in Table 8.1.

TABLE 8.1. Key differences between multiple flask and perturbation experiments.

Feature Multiple Flask Experiments Perturbation Experiments

Experimental Multiple flasks, each with Single flask with initial high [S]
Setup different [S]
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Feature Multiple Flask Experiments Perturbation Experiments

Data Inde- Data points are independent Data points are correlated

pendence (repeated measures)

Analysis Nonlinear least squares Nonlinear mixed model (NLMM)
regression (NLS)

R Function nls() nlme ::nlme()

Our choice between multiple flask and perturbation experiments depends on
our research questions and experimental constraints. In both methods, we must
consider all sources of error and variability, such as measurement error, the type
of nutrient, the physiological state of the alga, the light intensity, the experimental
temperature, and other variables that might affect the uptake response.

We apply the Michaelis-Menten model (Equation 3) to data from multiple flask
and perturbation experiments to characterise nutrient uptake. Applied to algae,
this model assumes an irreversible uptake process that saturates at high substrate
concentrations. It effectively quantifies key characteristics of the nutrient uptake
system, including the maximum uptake rate and the algae’s affinity for the nutrient.

We use the nls () function to fit the Michaelis-Menten model to the data from
multiple flask experiments. For the perturbation experiment, things are a bit more
complicated. This method includes dependent data points because the measure-
ments are taken from the same flask at different times, introducing a correlation
between observations. This violates the independence assumption required for stan-
dard regression models. To accurately analyse these data, I recommend a nonlinear
mixed-effects model implemented in the nlme( ) function. Mixed-effects models ac-
count for fixed effects (overall trends across all observations) and random effects
(variations specific to individual experimental units, in this case, time points within
the same flask). This helps handle the correlation between repeated measures and
produces reliable estimates of the uptake dynamics within the flask.

The Michaelis-Menten equation is given by:

Vmax ) [Si]
M= Kris e ®

Where:

« 1/ is the uptake rate at the i-th observation,

o V.4 is the maximum nutrient uptake rate achieved,

« [S;] is the substrate concentration at the i-th observation,

« K, is the Michaelis constant, which represents the substrate concentration at
which the uptake rate is half of V,,,, and

« ¢; is the error term at the i-th observation. and

The two parameters of the Michaelis-Menten model are rooted in theory and
have ecophysiological interpretations. K,,, is a measure of the alga’s affinity for the
nutrient and is determined by the kinetic constants governing the formation and
dissociation of the enzyme-substrate complex responsible for taking up the nutrient;
lower values indicate a higher affinity. V., represents the maximum capacity of
the alga to utilise the nutrient.



8.5. EXAMPLE: ALGAL NUTRIENT UPTAKE KINETCIS 119

8.5.1  Hypothesis Testing and the Michaelis-Menten Model

8.5.1.1 Linear vs. Michaelis-Menten Model.  Often, we aim to understand the rela-
tionship between two variables but we may not yet know which model best describes
this relationship. For instance, in algal nutrient uptake kinetics, both a linear model
and a nonlinear Michaelis-Menten model can be used to describe the relationship
between nutrient uptake rate and substrate concentration. Both models are valid
but they have different interpretations and unique ecophysiological implications.

The choice between the two models depends on the biological system.

« Linear models indicate that the uptake process is inherently unsaturated, such as
with the uptake of ammonium. In this case, the uptake rate continues to increase
linearly with substrate concentration.

« The Michaelis-Menten model suggests that the uptake rate eventually saturates
as the substrate concentration increases, which is often the case with nitrate.

The key question is: How do we decide which model fits our data best?

The simplest way is to visually inspect the scatter of points on a plot of the V'vs. [S]
data, which would be part of any exploratory data analysis. If the data exhibit a clear
saturation pattern, where the uptake rate levels off at high substrate concentrations,
the Michaelis-Menten model is likely to provide a better fit. Conversely, if the data
show a linear relationship over the observed range of substrate concentrations, the
linear model may be more appropriate.

It is also important to consider the biological plausibility of the models. If there
is prior knowledge or theoretical reasons to expect a saturating relationship between
the uptake rate and substrate concentration, the Michaelis-Menten model may be
more appropriate, even if both models provide a similar fit to the data.

Confirmation can be obtained by fitting both models to our data and comparing
their performance using statistical measures such as the sum of squared residuals
(SSR), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC),
or log-likelihood test.

To proceed with the statistical approach, we must first set hypotheses such as
these to compare the models:

Hy: The Michaelis-Menten model does not provide a better fit to the data than a
simple linear model.

In other words, we suggest with the null hypothesis that the relationship between
nutrient uptake rate and the substrate concentration is adequately described by a
linear model rather than the Michaelis-Menten nonlinear model. The implication
is that the uptake rate increases linearly with substrate concentration, without
saturation.

H,: The Michaelis-Menten model provides a significantly better fit to the data
than a simple linear model.

With the alternative hypothesis we propose that the relationship between the
nutrient uptake rate and the substrate concentration is best described by the nonlin-
ear Michaelis-Menten model, so the uptake rate initially increases with substrate
concentration but eventually levels off, indicating saturation.

To test these hypotheses, we can:

1. Fit both the Michaelis-Menten model and a linear model to the data.
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2. Compare the goodness-of-fit of both models using statistical measures such as
the SSR, AIC, or BIC.

3. Perform a model comparison test (such as an F-test or likelihood ratio test) to
determine if the improvement in fit provided by the Michaelis-Menten model is
statistically significant compared to the linear model.

In the above scenario, which is to decide among the linear and Michaelis-Menten
models, hypotheses concerning the parameters of the models are not directly tested
as they are not really of interest (except for estimating their magnitude, perhaps).
Instead, the focus is on the overall goodness-of-fit of the models to the data.

8.5.1.2 Comparing Two Michaelis-Menten Models. ~Here, we may be interested in
testing whether the parameters V,,,, and K,,, differ from some hypothesised values
or across different experimental conditions.

In the first instance, we can set up the hypotheses as follows:

Hy : Vipax = Vinax and K, = K,

where V;i,, and K;, are the hypothesised values (or values from a reference
condition) for the maximum uptake rate and Michaelis constant, respectively.

Hy @ Vinax # Visas 08 K # Ky

This alternative hypothesis states that at least one of the parameters (V,,,, or
K,,) differs from the hypothesised value.

If the experiment involves different experimental conditions or treatments, we
can modify the hypotheses accordingly. For example, if we want to test whether the
parameters differ between two experimental conditions (A and B), the hypotheses
could be:

Hy : Vn?ax = VrEax and Krﬁ = Krﬁ

Hy @ Vi # VB, orKj # K2

In this case, the null hypothesis states that the maximum uptake rate and
Michaelis constant are the same for both experimental conditions, while the al-
ternative hypothesis states that at least one of the parameters differs between the
two conditions.

After fitting the Michaelis-Menten model to the data using the nl1s() or nlme()
functions in R, appropriate statistical tests (e.g., likelihood ratio tests, Wald tests,
or other model comparison techniques) can be performed to evaluate the hypothe-
ses and determine whether the parameter estimates significantly differ from the
hypothesised values or across experimental conditions.

8.5.2 Multiple Flask Experiment

8.5.2.1 Fitting a single model (NLS). To demonstrate fitting a nonlinear model to
Vvs [S] data produced from a multiple flask experiment, I simulate data across a
range of substrate concentrations. We then fit the model to the data using the nls()
function in R. The dataset consists of five replicate flask sets (n = 5) for each of
13 substrate concentrations. Each set therefore results in independently estimated
uptake rates for the initial nutrient concentrations. The dataset is shown in Table 8.2,
and a plot of V as a function of [S] is shown in Figure 8.3.
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TABLE 8.2. Simulated data for a multiple flask experiment on an alga (showing only
the top and bottom three rows).

Replicate flask [S] A%
1 ) 0.00
2 ) 0.00
3 ) 0.00
3 30 37.64
4 30 37.97
5 30 35.95
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FIGURE 8.3. Plot of V as a function of [S] for a multiple flask experiment involving
seven replicate flask sets.

In Figure 8.3, there is a clear indication that the uptake rates plateau at higher sub-
strate concentrations, suggesting that fitting a Michaelis-Menten model is advisable.
Later, I will compare this with a linear model for completeness. A central feature of
this dataset is that the data were collected independently, with each flask set repre-
senting a separate experimental unit. There is no correlation between flasks within
a set, and no correlation across the initial substrate concentrations. Consequently,
the assumption of independence is fully met, allowing the simplest expression of
the nls( ) function to be used to fit the Michaelis-Menten model to the data.

The Michaelis-Menten model is fit to the data using the n1s( ) function in R. It
is specified as:
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# Define the model function
mm_fun <- function(S, Vmax, Km) {
Vmax * S / (Km + S)

}

# Fit the nonlinear model Michaelis-Menten model

nls_mod <- nls(V ~ mm_fun(S, Vmax, Km), ®
data = mf_data,
start = c(Vmax = 30, Km = 5)) @)

@® The model formula specifies the Michaelis-Menten equation, with V as the de-
pendent variable on the left-hand side and S as the independent variable on the
right. The model parameters Vmax and Km will be estimated when fitting the model.
@ The start argument provides initial values for the model parameters. The Vmax
and Km parameters are estimated by minimising the sum of squared residuals be-
tween the observed and predicted values of V. The nls( ) function uses an iterative
process to find the best-fitting values for these parameters, and the starting values
improve the success of model convergence.
Here is the model summary:

summary(nls_mod)

Residual standard error: 1.092 on 63 degrees of freedom

Number of iterations to convergence: 4
Achieved convergence tolerance: 4.705e-07

>
> Formula: V ~ mm_fun(S, Vmax, Km)

>

> Parameters:

> Estimate Std. Error t value Pr(>|t])

> Vmax 49.2444 0.8924 55.18 <2e-16 **%x

> Km 9.4953 0.4474 21.22 <2e-16 **x

> _—

> Signif. codes: 0 '**' 0.001 '%xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
>

>

>

>

>

The above output provides the estimates for V,,, and K,,,, along with their
standard errors, t-values, and p-values:

« The estimated maximum uptake rate (V;,,,) is approximately 49.24 uMNg~thr~!
and the small standard error associated with this parameter (0.89) indicates a
precise estimate. The ¢-value (55.18) is very high, and the corresponding p-value is
extremely small (<0.0001), indicating that V,,,, is highly significantly different
from zero.

« The estimated Michaelis constant (K,,) is approximately 9.50 ©M and its standard
error (0.45) is also small, suggesting a precise estimate. The ¢-value (21.22) and the
very small p-value (<o.0001) indicate that K,,, is also highly significantly different
from zero.
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FIGURE 8.4. Plot of the Michaelis-Menten model fitted to the data in Figure 8.3.
The vertical and horizontal dashed lines indicate the estimated K,,, and V,,,,, values,
respectively.

« The residual standard error is 1.10 on 63 degrees of freedom, indicating the average
deviation of the observed uptake rates from the fitted model values.

« The model converged in 4 iterations with a very small convergence tolerance,
indicating a good fit and stability of the model.

@ Results

The Michaelis-Menten parameters, maximum uptake rate (V,,,,) and half-
saturation constant (K,,), were estimated using nonlinear regression (Fig-
ure 8.4). The estimated Vi, Was 49.24 uM N g~! hr~! (SE = 0.89, t = 55.18,
p < 0.0001), and the estimated K,, was 9.50 uM (SE = 0.45, t = 21.22,
p < 0.0001). Both parameters were significantly different from zero. The
model fit was good, converging in 3 iterations with a residual standard error
of 1.10 (63 degrees of freedom).

The text is clear and concise, but here are a few minor changes for improved
readability and precision:

Assumption tests Since these data are simulated and drawn from a normal
distribution with equal variances across the range of substrate concentrations, the
assumptions of homoscedasticity and normality of residuals are inherently met. In
this example, we fit the model solely to obtain estimates of the Michaelis-Menten
parameters, rather than to make predictions, inferences, or calculate confidence
intervals. Therefore, assumption tests are not critical at this stage. We will formally
test assumptions in Section 8.5.2.3 when comparing the effects of experimental
treatments on kinetic parameters.
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8.5.2.2 Is the Michaelis-Menten model a better fit than a linear model?. In Sec-
tion 8.5.1.1, we pose a hypothesis that requires comparing a linear model to a
Michaelis-Menten model fitted to the same data. Figure 8.4 indicates the nonlinear
model indeed provides a very good fit but in some situations this distinction may be
less clear and require verification. Let us fit a linear model to the above data and
compare it to the Michaelis-Menten model.

# Fit the linear model
1m_mod <- 1m(V ~ S, data = mf_data)

summary(1lm_mod)

>

> Call:

> Ilm(formula = V ~ S, data = mf_data)

>

> Residuals:

> Min 1Q Median 3Q Max

> -9.354 -4.791 0.580 4.948 8.293

>

> Coefficients:

> Estimate Std. Error t value Pr(>|t])

> (Intercept) 6.46005 0.98044 6.589 1.03e-08 **x*

> S 1.29488 0.06683 19.376 < 2e-16 #**%*

S oo

> Signif. codes: 0 '**' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
>

> Residual standard error: 5.13 on 63 degrees of freedom

> Multiple R-squared: 0.8563, Adjusted R-squared: 0.854
> F-statistic: 375.4 on 1 and 63 DF, p-value: < 2.2e-16

The linear model summary shows that the slope and intercept are significantly
different from zero, indicating a good fit. The R? value is 0.86, which is very high,
suggesting that the linear model explains 86% of the variance in the data. The residual
standard error is 5.13, which is higher than the Michaelis-Menten model, indicating
a worse fit. We can test the difference between the models formally by examining
the AIC, BIC, or SSR, and the likelihood ratio test.

AIC(lm_mod, nls_mod)

> df AIC
> 1m_mod 3 400.9933
> nls_mod 3 199.8814

BIC(1m_mod, nls_mod)

> df BIC
> 1m_mod 3 407.5164
> nls_mod 3 206.4046
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# Calculate the sum of squared residuals (SSR)
sum(residuals(lm_mod)"2)

> [1] 1657.938

sum(residuals(nls_mod)"2)

> [1] 75.13611

anova(lm_mod, nls_mod)
Analysis of Variance Table

>
>
> Response: V

> Df Sum Sq Mean Sq F value Pr(>F)

> S 1 9879.9 9879.9 375.43 < 2.2e-16 **x*
> Residuals 63 1657.9 26.3

>

>

Signif. codes: 0 '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 " ' 1

The AIC, BIC, and SSR values for the Michaelis-Menten model are lower than
those for the linear model. Low is good, and we conclude that the Michaelis-Menten
model is a better fit. The likelihood ratio test also shows that the Michaelis-Menten
model is significantly better than the linear model (d.f. =1, F = 375.43, p < 0.0001).
Therefore, we can conclude that the Michaelis-Menten model is the most appropriate
model for these data and that the rate of nutrient uptake by the seaweed (in this
example) is saturated at high nutrient concentrations.

8.5.2.3 Comparing treatment effects (NLS and NLMM). Experiments are seldom
as simple as the one above. To develop our example further, consider an experiment
designed to assess whether an experimental treatment, such as light intensity or
seawater temperature, affects the nutrient uptake rate of a seaweed. It is biologically
plausible to expect that each treatment will result in unique V,,,,,, and/or K, values.
For example, we know that the uptake rate of nitrate (NO, ™) might increase at
higher light intensities and higher temperatures. Therefore, our hypothesis for this
experiment is that the nutrient uptake kinetics of the seaweed is influenced by the
treatment, as more formally stated in Section 8.5.1.2. To test this hypothesis, we fit a
Michaelis-Menten model so that it allows estimates of V},,,, and K,,, to vary among
treatment groups.

The data for a multiple flask experiment with a treatment effect comprised of
three levels are provided in Table 8.3. Except for a new variable (treatment), the data
are in all other respects identical to those in Section 8.5.2.1.

Option 1 The nls() function in R does not handle factor variables directly,
which means we cannot include the treatment variable as a factor in the model
formula. To address this limitation, we fit the nls() model separately for each treat-
ment group. This approach allows each treatment to have its own V,,, and K,
values, effectively accommodating the variability in the Michaelis-Menten parame-
ters across treatments.

In addition to fitting separate models for each treatment, we also fit a global
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TABLE 8.3. Simulated data with three treatment levels for a multiple flask experi-
ment on a seaweed species.

Treatment Replicate flask [S] A%
Treatment 1 1 0 0.00
Treatment 1 2 0 0.00
Treatment 1 3 0 0.00
Treatment 3 3 30 17.19
Treatment 3 4 30 16.66
Treatment 3 5 30 16.00

model (a null model) to all the data. The global model assumes that the effect of the
experimental treatment is negligible, meaning that all treatments share the same
Vmax and K,,,. This global fit serves as a baseline for comparison.

To determine whether the Michaelis-Menten parameters significantly differ
among the treatment groups, we perform a likelihood ratio test. The likelihood
ratio test compares the fit of the global model (where parameters are shared across
treatments) to the combined fit of the separate models (where parameters vary by
treatment). The test statistic is the difference in the log-likelihoods of the two models,
which follows a y? distribution with degrees of freedom equal to the difference in
the number of parameters between the two models.

# Fit separate models
separate_models <- mf_data2 [
group_by(trt) D
nest() D
mutate(model = map(data, ~nls(V ~ mm_fun(S, Vmax, Km),
data = .x,
start = list(Vmax = 40, Km = 10))))

# Extract model summaries of separate models
model_summaries <- separate_models >
mutate(summary = map(model, broom::tidy))

# Display summaries of separate models
model_summaries [
select(trt, summary) [
unnest(summary)

> # A tibble: 6 x 6

> # Groups: trt [3]

> trt term estimate std.error statistic p.value
> <fct> <chr> <dbl> <dbl> <db1l> <dbl>
> 1 Treatment 1 Vmax 49.2 0.958 51.4 3.94e-53
> 2 Treatment 1 Km 9.55 0.482 19.8 9.50e-29
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> 3 Treatment 2 Vmax 39.4 0.865 45.5 6.66e-50
> 4 Treatment 2 Km 7.54 0.481 15.7 2.14e-23
> 5 Treatment 3 Vmax 19.2 0.558 34.5 1.34e-42
> 6 Treatment 3 Km 5.87 0.560 10.5 1.97e-15

# Fit the global model
global_model <- nls(V ~ mm_fun(S, Vmax, Km),
data = mf_dataz2,
start = list(Vmax = 45, Km = 9))

# Extract log-likelihoods and degrees of freedom
loglLik_global <- loglLik(global_model)
df_global <- attr(loglLik_global, "df")

# Combined log-likelihoods and degrees of freedom
loglik_separate <- sum(sapply(separate_models$model, logLik))
df_separate <- sum(sapply(separate_models$model,

function(m) attr(loglLik(m), "df")))

# Perform the likelihood ratio test

lrt_stat <- 2 * (logLik_separate - loglLik_global)

p_value <- pchisq(lrt_stat, df = df_separate - df_global,
lower.tail = FALSE)

# Display results

cat("Global model log-likelihood:", logLik_global, "\n")
> Global model log-likelihood: -620.5374

cat("Separate models log-likelihood:", loglLik_separate, "\n")
> Separate models log-likelihood: -300.2111

cat("Degree of freedom:", df_separate - df_global, "\n")
> Degree of freedom: 6

cat("Likelihood ratio test statistic:", lrt_stat, "\n")
> Likelihood ratio test statistic: 640.6525
cat("p-value:", p_value, "\n")

> p-value: 3.953134e-135

The results of the likelihood ratio test indicate whether the variation in V,,

and K,,, among the treatments is statistically significant. If the test is significant, it
suggests that the Michaelis-Menten parameters differ across treatments. We interpret
the results as follows:

The log-likelihood value (-620.7498) for the global model, indicating the fit of the
model with shared parameters.

The combined log-likelihood value (-313.1862) for the separate models, indicating
the fit of the models with parameters varying by treatment.

The calculated test statistic (615.1273) for the likelihood ratio test on 6 degrees of
freedom.

The p-value of the test is less than 0.0001 and provides strong evidence that V.
and K, differ significantly among the treatment groups.



128

@ Results

The analysis aimed to determine if the Michaelis-Menten parameters V.
and K, significantly differed among the three experimental treatments. This
was evaluated by fitting a global model with shared V,,,,, and K,,, values across
all treatments and comparing it to a model allowing separate V ,,,, and K,
estimates for each treatment. The log-likelihood value for the global model,
which assumes shared V,,,, and K,,, values across all treatments, was -620.75,
indicating the fit of the model with common parameters. In contrast, the
combined log-likelihood value for the separate models, which allow V,,,, and
K,, to vary by treatment, was -313.19, indicating the fit of the models with
treatment-specific parameters. The calculated test statistic for the likelihood
ratio test was 615.13 (d.f. = 6, p < 0.001), providing strong evidence that the
Michaelis-Menten parameters V,,,, and K,,, differ significantly among the
treatment groups. Consequently we estimate a V},,,, of 49.2 + 0.96, 39.4 + 0.87
UM N g~ hr~! and 18.9 = 0.65 and a K,,, of 9.55 = 0.48, 7.54 * 0.48 and 5.50 *
0.64 uM for treatments 1, 2 and 3 respectively.

CHAPTER 8. NONLINEAR MODELS

Option 2 If Option 1 seems cumbersome, we can fit a NLMM using the nlme
package instead. This package allows us to fit a mixed model with random effects
for each treatment group. In this model, the fixed effects are the Michaelis-Menten
parameters V,,,, and K,,,, which vary by treatment, while the random effects are the
replicate-specific intercepts. Thus, the cumbersome nls( ) formulation is replaced
by the compact but more fiddly nlme() model specification. Pick your poison. The
model is specified as follows:

# Fit the model with the same parameters for both treatments
# Starting values for Vmax and Km

start_vals <- c(Vmax = 50, Km = 10)

global_model <- nlme(

)

V ~ mm_fun(S, Vmax, Km),
data = mf_dataz2,

fixed = Vmax + Km ~ 1,
random = Vmax ~ 1 | trt/rep,
start = start_vals

©®E

# Fit the model with parameters varying by treatment
# Starting values for Vmax and Km for each treatment
start_vals <- c(Vmaxl = 50, Vmax2 = 40, Vmax3 = 30,
Kmi = 10, Km2 = 10, Km3 = 5) ©)
separate_models <- nlme(
V ~ mm_fun(S, Vmax, Km),
data = mf_data2,
fixed = list(Vmax ~ trt, Km ~ trt), ®
random = Vmax ~ 1 | trt/rep,
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start = start_vals

)

@ The fixed effects indicate that both V,, and K, are fixed (do not vary) across
treatments.
@ The random effects indicate that the V,,, parameter varies by treatment and
replicate.
(3 The starting values for the V,,,, and K,,, parameters are specified for each treat-
ment group. Because we are now fitting a separate model for each treatment, we
need to provide starting values for each treatment.
@ The fixed effects now indicate that both V,,,, and K,,, vary by treatment.

The estimated parameters for the global model and the separate models can be
extracted using the summary () function:

# Extract the estimated parameters (abbreviated output)
# summary(global_model) # for verbose output
summary(global_model)$tTable

> Value Std.Error DF  t-value p-value
> Vmax 36.248519 6.287216 179 5.765432 3.504878e-08

> Km 8.271727 0.304345 179 27.178780 1.952829e-65

# Extract the estimated parameters (abbreviated output)
# summary(separate_models) # for verbose output
summary(separate_models)$tTable

> Value Std.Error DF t-value p-value
> Vmax.(Intercept) 49,199643 0.9498953 175 51.794808 4.546825e-108
> Vmax.trtTreatment 2 -9.879910 1.2312719 175 -8.024150 1.422499e-13
> Vmax.trtTreatment 3 -29.971535 1.1529098 175 -25.996427 5.425758e-62
> Km.(Intercept) 9.542071 0.4707903 175 20.268197 8.782004e-48
> Km.trtTreatment 2 -2.027313 0.6350017 175 -3.192611 1.671900e-03
> Km.trtTreatment 3 -3.689268 0.7898830 175 -4.670651 5.961284e-06

The log-likelihood ratio test can then easily be performed using the anova()
function, which compares the global model with the separate models:

anova(global_model, separate_models)

> Model df AIC BIC loglik  Test L.Ratio p-value
> global_model 1 5 657.9763 674.3413 -323.9882
> separate_models 2 9 621.5038 650.9608 -301.7519 1 vs 2 44.47252 <.0001

Again, the results of the likelihood ratio test indicate that the variation in V.
and K,,, among the treatments is statistically significant (log-likelihood = 45.20, p <
0.0001). The AIC values can also be used to compare the models, with lower AIC
values indicating a better fit. In this case, the separate models have a lower AIC
value (644.28), suggesting that they provide a better fit to the data than the global
model (681.479). The data fitted with the global and separate models is presented in
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Figure 8.6.

Assumption tests To complete our example comparing the Michaelis-Menten
parameters among treatments, let’s confirm the assumptions by examining the resid-
uals. Residuals in nonlinear regression models have the same interpretation as in
linear models, and therefore, the assumption tests available for linear models can
be applied here as well. For instance, we can use the shapiro.test() function
to check the normality of residuals, as shown below, and the hist() and plot()
functions for diagnostic plots. In real-world data, it is advised to verify these assump-
tions before accepting the analysis and drawing conclusions from the nonlinear
regression model. Let’s check the normality of residuals for each treatment and plot
the residuals to check for normality and homoscedasticity (Figure 8.5).

# Add residuals and fitted information to the data frame
mf_data2$residuals_separate <- residuals(separate_models)
mf_data2$fitted_values_separate <- fitted(separate_models)

# Perform the Shapiro-Wilk test for each treatment
shapiro.test(mf_data2$residuals_separate[mf_data2$trt = "Treatment
>

>  Shapiro-Wilk normality test

>

> data: mf_data2$residuals_separate[mf_data2$trt = "Treatment 1"]
>W = 0.976, p-value = 0.2374
shapiro.test(mf_data2$residuals_separate[mf_data2$trt = "Treatment

>

> Shapiro-Wilk normality test
>

> data: mf_data2$residuals_separate[mf_data2$trt = "Treatment 2"]
> W = 0.97125, p-value = 0.1344
shapiro.test(mf_data2$residuals_separate[mf_data2$trt = "Treatment

>
> Shapiro-Wilk normality test

>
> data: mf_data2$residuals_separate[mf_data2$trt = "Treatment 3"]
>W = 0.95091, p-value = 0.01177

The Shapiro-Wilk test results indicate that the residuals are normally distributed
for Treatments 1 and 2 (p > 0.05) but not for Treatment 3 (p < 0.05). However,
the histograms in Figure 8.5 show that the residuals are approximately normally
distributed for all treatment groups, with the median roughly in the middle of
the distribution in each case. This apparent discrepancy can be explained by the
sensitivity of the Shapiro-Wilk test to sample size. With large sample sizes, even
minor deviations from normality can be detected as statistically significant. In
situations such as this one, I suggest that it is important to consider the sample
size and visual inspection of the data when interpreting the results of normality
tests. Here, given the relatively large sample size and the visual assessment of
the histograms, we can reasonably conclude that the residuals are approximately

1"1)

2"1)

3"1)
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FIGURE 8.5. Histograms (A) of residuals and plots of residuals vs. the fitted values
(B) for residuals for the three treatments in the multiple-flask experiment.

normally distributed for all treatment groups.

Another normality tests such as the Kolmogorov-Smirnov (K-S) test might be less
sensitive to sample size and could be considered for comparison. The K-S test is a non-
parametric statistical test that is used to determine if a sample comes from a specific
probability distribution. Here I use it to test if a sample follows a normal distribution
(pnorm), but it can also be used to test against other theoretical distributions or
to compare two empirical distributions. The K-S test can be performed using the
ks.test(), as shown below.

perform_ks_test <- function(data, treatment) {
ks.test(data$residuals_separate[data$trt = treatment], "pnorm",

mean = mean(data$residuals_separate[data$trt = treatment]),

sd = sd(data$residuals_separate[data$trt = treatment]))

}

# Perform the test for each treatment group
perform_ks_test(mf_data2, "Treatment 1")
>

Asymptotic one-sample Kolmogorov-Smirnov test

>

>

> data: data$residuals_separate[data$trt = treatment]
> D = 0.10658, p-value = 0.4513

> alternative hypothesis: two-sided
perform_ks_test(mf_data2, "Treatment 2")

>
>
>

Asymptotic one-sample Kolmogorov-Smirnov test
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> data: data$residuals_separate[data$trt = treatment]
> D = 0.1246, p-value = 0.2652
> alternative hypothesis: two-sided
perform_ks_test(mf_data2, "Treatment 3")
>

Asymptotic one-sample Kolmogorov-Smirnov test

D = 0.14151, p-value = 0.148

>
>
> data: data$residuals_separate[data$trt = treatment]
>
> alternative hypothesis: two-sided

We see that the K-S test indicates that the residuals are normally distributed
for all treatment groups (p > 0.05). As already noted, this test is less sensitive to
sample size than the Shapiro-Wilk test, and the results are consistent with the visual
assessment of the histograms.

We should also check for homoscedasticity (here I use the Levene test) and a
plot of residuals versus fitted values.

# Perform the Levene test

car:: leveneTest(residuals_separate ~ trt, data = mf_data2)

> Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 2 1.4933 0.2272
192

v V V

The Levene test shows that the variances are the same across the three treatments
and this is confirmed by the plot of residuals against the fitted values in Figure 8.5.

@ Results

Michaelis-Menten models were fitted to nutrient uptake data across three
experimental treatments to investigate the effects of the treatments on sea-
weed nutrient kinetics. A global model, assuming shared kinetic parameters
(Vax and K3, across all treatments, was compared to a model with separate
parameters for each treatment. The model allowing treatment-specific pa-
rameters (AIC = 644.3) provided a significantly better fit to the data than the
global model (AIC = 681.5), a finding confirmed by the log-likelihood test
(log-likelihood ratio = 45.20, d.f. = 4, p < 0.0001). As the assumption tests
do not indicate any cause for concern regarding the distribution of residuals,
we conclude that the experimental treatments significantly influenced the
nutrient uptake kinetics of the seaweed (Figure 8.6).

Specifically, all three treatments exhibited unique combinations of V},,,, and
K,, values (Treatment 1: V,,,,, = 49.2, K,,, = 9.5; Treatment 2: V,,,,. = 39.3,
K, = 7.5; Treatment 3: V., = 19.0, K,,, = 5.5). These findings support the
hypothesis that nutrient uptake kinetics in this seaweed species are sensitive
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FIGURE 8.6. Plot of the Michaelis-Menten model fitted to the data in Table 8.3. Fits
are provided for the separate models and the global model.

TABLE 8.4. Simulated data for a multiple flask experiment on an alga (showing only
the top and bottom three rows).

Replicate flask Treatment A% [S]
1 low 10.8 60.2
2 low 10.0 61.1
3 low 14.1 60.8
1 high 0.0 0.1
2 high 0.0 0.1
3 high 0.0 0.1

to environmental perturbations.

8.5.3 The Perturbation Method (NLMM)

The data for this example is by [5]. A perturbation experiment was conducted to
determine the nutrient uptake rate versus nutrient concentration of the red seaweed,
Gracilaria sp. The experiment involved flasks, initially enriched to approximately 55
M M nitrate, sampled 16 times over approximately 2.5 hours. The uptake rates were
measured under three rates of water movement (treatments): low, medium, and
high. Each treatment had three replicate flasks (Table 8.4). The primary objective
was to determine if the Michaelis-Menten parameters significantly differ among the
three levels of water movement, and we must state a hypothesis similar to those in
Section 8.5.1.2.

For the reasons discussed in Section 8.5, we will use a nonlinear mixed effects
model, nlme( ), to analyse these data. Models such as these can be quite challenging
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to fit. There are several things we have to deal with. First and most obviously is the
fact that the data are repeated measures, and the residuals may be correlated. Second,
the flasks are nested within the treatment levels, and we need to account for this in
the model. Finally, we need to account for the possibility that the Michaelis-Menten
parameters may vary among the treatment levels—in fact, we want to test this! Here
is the model:

# Determine the number of levels in the factor 'trt'
num_levels <- length(levels(mm_data$trt))

# Starting values for the fixed parameters

# (one set for each level of 'trt')

start_vals <- list(fixed = c(Vmax = rep(max(mm_data$Vv), num_levels),
Km = rep(median(mm_data$sS), num_levels)))

nlme_mod2 <- nlme(V ~ mm_fun(S, Vmax, Km),
data = mm_data,
fixed = Vmax + Km ~ trt, ®
random = Vmax + Km ~ 1 | flask, @)
start = start_vals,
method = "REML")

@ The fixed argument specifies that the Michaelis-Menten parameters Vmax and
Km are fixed effects that vary among the treatment levels, and a grouping variable
(trt) is used to specify the levels of the treatment factor.

@ The random argument specifies that the Michaelis-Menten parameters Vmax and
Km are random effects that vary among the replicate flasks.

This model brings us closer to our goal, but there are some notable omissions. The
specification allows the Michaelis-Menten parameters to vary among the treatment
levels, which is central to our hypothesis. We have also accounted for the replication
structure of the data, recognising that random variations may arise not due to the
treatment levels but due to the replicate flasks.

However, we have not accounted for the central feature of a perturbation experi-
ment, which is the correlation structure of the residuals. We must deal with the fact
that the residuals may be correlated due to the repeated measures nature of the data.
Additionally, we have omitted the nesting of the flasks within the treatment levels.

Let’s update our model accordingly:

nlme_mod3 <- nlme(V ~ mm_fun(S, Vmax, Km),
data = mm_data,
fixed = list(Vmax ~ trt, Km ~ trt),

random = Vmax ~ 1 | trt/flask, @
groups = ~ trt/flask,
correlation = corAR1(form = ~ 1 | trt/flask), (3

start = start_vals,
method = "REML")
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@ The random argument specifies that the Michaelis-Menten parameter Vmax is a
random effect that varies among the replicate flasks nested within the treatment
levels.

@ The groups argument specifies that the replicate flasks are nested within the
treatment levels.

@) The correlation argument specifies that the residuals have a first-order autore-
gressive correlation structure. This structure assumes that the correlation between
residuals decreases exponentially with the time lag between observations. Flask is
nested within treatment.

If we are not convinced that nlme_mod3 is the best model, we can compare it to
nlme_mod2 using a likelihood ratio test. It is used to compare the fit of two models,
where one model is a special case of the other. The test statistic is the difference in
the log-likelihoods of the two models, and the null hypothesis is that the simpler
model is the best fit.

anova(nlme_mod2, nlme_mod3)

> Model df AIC BIC loglLik
> nlme_mod2 1 10 637.2782 665.6411 -308.6391
> nlme_mod3 2 10 632.1053 660.4681 -306.0527

# Likelihood ratio test
lrt_stat <- -2 % (loglLik(nlme_mod2) - logLik(nlme_mod3))

# Determine degrees of freedom and p-value
df_diff <- attr(logLik(nlme_mod3), "df") - attr(logLik(nlme_mod2), "df")
p_value <- pchisq(lrt_stat, df = df_diff, lower.tail = FALSE)

print(paste("LRT statistic:", lrt_stat))

> [1] "LRT statistic: 5.17293584867423"
print(paste("Degrees of freedom:", df_diff))
> [1] "Degrees of freedom: 0"
print(paste("P-value:", p_value))

> [1] "P-value: 0"

The likelihood ratio test indicates that nlme_mod3 is a better fit than nlme_mod2
(p < 0.001). This result suggests that the Michaelis-Menten parameters vary among
the treatment levels, and the residuals have a first-order autoregressive correlation
structure.

summary(nlme_mod3)

> Nonlinear mixed-effects model fit by REML
>  Model: V ~ mm_fun(S, Vmax, Km)

> Data: mm_data

> AIC BIC loglLik

> 632.1053 660.4681 -306.0527
>
>

Random effects:
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> Formula: Vmax ~ 1 | trt
> Vmax.(Intercept)
> StdDev: 0.00837941
>
> Formula: Vmax ~ 1 | flask %in% trt
> Vmax.(Intercept) Residual
> StdDev: 0.0002584018 2.731378
>
> Correlation Structure: AR(1)
> Formula: ~1 | trt/flask
> Parameter estimate(s):
> Phi
> 0.2048944
> Fixed effects: 1list(Vmax ~ trt, Km ~ trt)
> Value Std.Error DF t-value p-value
> Vmax.(Intercept) 15.394469 1.082697 118 14.218627 0.0000
> Vmax.trtlow -1.660245 2.381505 118 -0.697141 0.4871
> Vmax.trtmed -3.555246 1.503682 118 -2.364361 0.0197
> Km.(Intercept) 5.381378 1.873000 118 2.873133 0.0048
> Km.trtlow 11.448682 8.044641 118 1.423144 0.1573
> Km.trtmed -0.381246 3.147606 118 -0.121123 0.9038
> Correlation:
> Vm.(I) Vmx.trtl Vmx.trtm Km.(I) Km.trtl
> Vmax.trtlow -0.455
> Vmax.trtmed -0.720 0.327
> Km.(Intercept) 0.726 -0.330 -0.523
> Km.trtlow -0.169 0.876 0.122 -0.233
> Km.trtmed -0.432 0.196 0.734 -0.595 0.139
>
> Standardized Within-Group Residuals:
> Min Q1 Med Q3 Max
> -2.0222398 -0.7529003 -0.2362146 0.4364407 3.2055101
>
> Number of Observations: 132
> Number of Groups:
> trt flask %in% trt
> 3 9

8.6 EXAMPLE: THE GROWTH RATE OF FISH (NLMM)

The von Bertalanffy model (Equation 4) is used to describe the growth patterns
of animals over time. For example, in a fish growth study, we measure the length
of individual fish at regular intervals as the fish ages. We can estimate growth
parameters specific to the fish species by fitting the von Bertalanffy model to these

length-at-age data
The model is given by:

L(t) = Lo (1 — e7Kt=t0))

“)
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TABLE 8.5. The Atlantic Cod data set with 30 fish and 15 years of growth data
(showing only the top and bottom three rows).

Fish ID Age (yr) Length (cm)
1 0.0 53
0.5 16.8
1.0 27.2
30 14.0 115.4
30 14.5 116.0
30 15.0 116.5
Where:

L(¢) is the length of the fish at time ¢.

« L, is the asymptotic length, representing the theoretical maximum length that
the individual would reach if it grew indefinitely.

« k is the growth coefficient, indicating the rate at which the growth of the fish

approaches its maximum size. A higher k value means it reaches its asymptotic

length more quickly.

to is the hypothetical age at which the individual’s length would be zero according

to the model.

L, (the asymptotic length) represents the length towards which the individual
grows as time (¢) approaches infinity. The concept behind L, is that as the fish ages,
its growth rate slows down and eventually approaches zero, with its length nearing
the asymptotic value L. k (the growth rate coefficient) determines how quickly the
fish reaches its asymptotic length. Physiologically, k reflects the metabolic rates and
general fitness of the fish, while ecologically, it can be influenced by environmental
factors such as food availability and temperature. Lastly, ¢, (the theoretical age at
zero length) is not directly observable in practice but provides a useful way to shift
the growth curve along the time axis to provide a better fit to the data, especially in
the early developmental stages.

Consider a study where the lengths of 30 Atlantic Cod, Gadus morua, in captiv-
ity are measured twice a year from hatching to 15 years. This creates a longitudinal
dataset with repeated length measurements for each fish over time. In this experi-
ment, we will focus on the growth patterns of individual fish, assuming they were
raised under identical conditions. This allows us to attribute any growth differences
to inherent biological variation among the fish. Apart from the repeated measures
on individual fish, we will assume that the data are independent in all other respects.

The longitudinal nature of the data requires that we use appropriate statistical
methods that account for the correlation among the repeated measures. We will use
a nonlinear mixed-effects regression for the data in Table 1.

A plot of the data is shown in Figure 8.7; here, each line represents the growth
trajectory of an individual fish over time.
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FIGURE 8.7. Plot of growth data measured in 30 Atlantic cod, Gadus morua.

> List of 1

> ¢ legend.position: chr "none"

> - attr(*, "class")= chr [1:2] "theme" "gg"
> - attr(*, "complete")= logi FALSE

> - attr(*, "validate")= logi TRUE

We will fit the von Bertalanffy growth model to the data using nlme :: nlme()
as follows, and the output is provided:

# von Bertalanffy growth function

vb_growth <- function(age, L_inf, k, t0) {
L_inf % (1 - exp(-k % (age - t0)))

}

# Define the nonlinear mixed-effects model
nlme_model <- nlme(Length ~ vb_growth(Age, L_inf, k, t0),
data = vb_data,

fixed = L_inf + k + t0 ~ 1, ®
random = L_inf + k ~ 1 | Fish_ID, @)
groups = ~ Fish_ID, ®
correlation = corAR1(form = ~ 1), ®

start = c(L_inf = 100, k = 0.2, t0 = -0.5))

# Print the summary of the model

summary(nlme_model)

> Nonlinear mixed-effects model fit by maximum likelihood
>  Model: Length ~ vb_growth(Age, L_inf, k, t0)

> Data: vb_data

> AIC BIC loglik
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-2833.361 -2794.679 1424.68

Random effects:

Formula: list(L_inf ~ 1, k ~ 1)

Level: Fish_ID

Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr

L_inf 1.857032547 L_inf
k 0.008341198 -0.139
Residual 0.555742464

>
>

>

>

>

>

>

>

>

>

>

> Correlation Structure: AR(1)

> Formula: ~1 | Fish_ID

> Parameter estimate(s):

> Phi

> 0.9972623

> Fixed effects: L_inf + k + t0 ~ 1

> Value Std.Error DF t-value p-value
> L_inf 124.80230 0.3551041 898 351.4527 0
> k 0.20042 0.0015299 898 131.0050 0
> 10 -0.20415 0.0040574 898 -50.3164 0
> Correlation:

> L_inf k

>k -0.137

> t0 -0.260 -0.007

>
>
>
>
>
>
>

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.2053004 -0.7552048 0.2402975 0.4902483 1.9150860

Number of Observations: 930
Number of Groups: 30

@ The fixed effects are the parameters of the von Bertalanffy growth model which
are invariant among fish.

@ The random effects are the asymptotic length and growth rate to account for the
intrinsic differences among fish.

3 The grouping variable is the fish ID.

@ The correlation structure is autoregressive of order 1 to account for the correlation
among repeated measures within the same fish, the ~ 1 indicates that the order of
the observations in the data must be used along which measurements are serially
correlated, and since no grouping variable is provided, all fish will have the same
correlation structure.
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FIGURE 8.8. Fit of the von Bertalanffy model to experimental data obtained from
30 Atlantic Cod individuals.

8.7 SCRATHPAD
8.7.1  Toinclude in the article

« Assumptions: Not necessary for simply estimating model parameters, but if the
model is used for prediction or inference, it is important to state the assumptions
of the model (e.g., linearity, homoscedasticity, independence of residuals) and
test them.

« i.i.d: The residuals are assumed to be independent and identically distributed
(i.i.d.), which is a common assumption in linear regression models. For a normal
distribution, this is written as ¢; ~ N(0,0?), where o? is the variance of the
residuals.

8.7.2 Contuinuing the MM model



