
9
Regularisation Techniques

Regularisation techniques are invaluable when dealing with complex datasets or
situations where traditional methodsmay fall short. They are used to enhancemodel
stability, improve predictive performance, and increase interpretability, especially
when working with multi-dimensional data in multiple linear regression models
and multivariate analyses. Regularisation addresses several common challenges in
statistical modelling: i) multicollinearity, ii) variable selection, iii) overfitting, and
iv) model simplification.

Environmental datasets often contain many independent variables, and it is
likely that only some of them are necessary to explain the phenomenon of inter-
est. Variable selection is the process of identifying the most important predictors
to include in a model. This can be achieved through the application of specialist,
domain-specific knowledge, or through statistical or data-driven approaches. Reg-
ularisation is an example of the latter, as it can automatically identify the most
relevant predictors on statistical grounds, serving as an alternative to traditional
variable selection methods such as Variance Inflation Factor (VIF) and stepwise
selection (see Section 6.6.4 and Section 6.6.5).

Overfitting occurs when a model ‘explains’ the noise in data together with the
underlying pattern, which might happen when the model has too many predictors
relative to the number of observations. This may also result when variable selection
has not been sufficiently addressed. An overfit model performs exceptionally well
on training data but fails to generalise to new, unseen data. Additionally, having
too many predictors can lead to multicollinearity (see Section 6.6.4). This is a
common issue in multiple linear regression when some of the many predictors
included in the model are correlated. Multicollinearity can lead to inflated standard
errors, unstable coefficients, and difficulty interpreting the model. Regularisation
help manage multicollinearity by shrinking coefficient estimates or setting some to
zero.

Effectiveness in variable selection, reducing multicollinearity, and mitigating
overfitting all contribute tomodel simplification. Regularisation achieves similar
outcomes by shrinking coefficient estimates or setting some to zero, making the
model easier to understand, explain, and interpret.

In this chapter, we will discuss three common regularisation techniques: Lasso,
Ridge, and Elastic Net Regression.

141

AJ Smit
AJ Smit (unpubl.) Chapter 9: Regularisation Techniques. In: Biostatistics — The Book (draft).

142 CHAPTER 9. REGULARISATION TECHNIQUES

9.1 ridge regression (l2 regularisation)

Ridge regression mathematically ‘tames’ the wildness of linear regression when
faced with multicollinearity. It achieves this by adding a penalty term to the linear
regression loss function—a term proportional to the square of the coefficients (the
L2 norm). This penalty nudges the coefficients towards zero, effectively shrinking
them without forcing them to be exactly zero.

In linear regression, the loss function is typically the Mean Squared Error (MSE),
which is the average of the squared residuals (also known as the residual sum of
squares, RSS). The optimisation objective is to minimise this loss function. In other
words, the linear regression model aims to find the coefficients that minimise the
average squared difference between the observed values and the predicted values.
The RSS is expressed in Equation 1:

𝑅𝑆𝑆(𝛽) = 𝑛∑𝑖=1(𝑦𝑖 − 𝛽0 − 𝑝∑𝑗=1 𝛽𝑗𝑥𝑖𝑗)2 (1)

And the MSE, which is the loss function to be minimised, is in Equation 2:

𝑀𝑆𝐸(𝛽) = 1𝑛 𝑛∑𝑖=1(𝑦𝑖 − 𝛽0 − 𝑝∑𝑗=1 𝛽𝑗𝑥𝑖𝑗)2 (2)

Where:
• 𝑦𝑖 is the observed value for the 𝑖-th observation.
• 𝛽0 is the intercept.
• 𝛽𝑗 are the coefficients for the predictors.
• 𝑥𝑖𝑗 is the value of the 𝑗-th predictor variable for the 𝑖-th observation.
• 𝑛 is the number of observations.
• 𝑝 is the number of predictors.

The notation 𝑅𝑆𝑆(𝛽) and𝑀𝑆𝐸(𝛽) indicates that these are functions of the coeffi-
cients 𝛽. The optimisation objective for linear regression is to find the coefficients 𝛽0
and 𝛽1 to 𝛽𝑝 that minimise the MSE. This can be expressed in Equation Equation 3:

min𝛽 { 1𝑛 𝑛∑𝑖=1(𝑦𝑖 − 𝛽0 − 𝑝∑𝑗=1 𝛽𝑗𝑥𝑖𝑗)2} (3)

Ridge regression extends the optimisation of the least squares regression by
introducing a penalty term to the loss function. This penalty term is proportional to
the square of the L2 norm of the coefficient vector, penalising large coefficient values.
Ridge regression is specifically designed to handle multicollinearity and mitigate
issues caused by correlated predictors. It also helps prevent overfitting when there
are many predictors relative to the sample size, providing a more stable estimation
process.

The penalty term is controlled by a hyperparameter1 called lambda (𝜆) that
determines the strength of the penalty. Larger values of 𝜆 lead to more shrinkage of
1. Hyperparameters are configuration settings that are external to your model and not learned from

the data itself.

9.2. LASSO REGRESSION (L1 REGULARISATION) 143

the coefficients.When 𝜆= 0, Ridge Regression is equivalent to ordinary least squares
regression. As 𝜆 approaches infinity, all coefficients (except the intercept) approach
zero. To find the optimal 𝜆, you might have to use techniques like cross-validation.
Cross-validation will be discussed later in Section Section 9.4.

The loss function in Ridge Regression is given by Equation 4:

𝐿𝑟𝑖𝑑𝑔𝑒(𝛽) = 𝑛∑𝑖=1(𝑦𝑖 − 𝛽0 − 𝑝∑𝑗=1 𝛽𝑗𝑥𝑖𝑗)2 + 𝜆 𝑝∑𝑗=1 𝛽2𝑗 (4)

Where 𝜆 is the regularisation parameter controlling the penalty’s strength. Note
that typically, the intercept 𝛽0 is not included in the penalty term.

In Equation Equation 4, 𝐿𝑟𝑖𝑑𝑔𝑒(𝛽) is the Ridge Regression loss function. This loss
function includes the residual sum of squares (RSS) plus a penalty term 𝜆∑𝑝𝑗=1 𝛽2𝑗 .
The optimisation objective in Ridge Regression is to find the values of the coefficients𝛽1 through 𝛽𝑝 that minimise this penalised loss function, while also finding the
optimal value for the intercept 𝛽0.

Ridge regression introduces a bias-variance trade-off. By shrinking the coeffi-
cients, it introduces a slight bias, as the model’s predictions may not perfectly match
the training data. However, this bias is often offset by a significant reduction in vari-
ance. The reduced variance means the model’s predictions are more stable and less
sensitive to small changes in the input data. This trade-off often results in improved
overall predictive performance, especially on new, unseen data.

So, Ridge Regression sacrifices a bit of bias (accuracy on the sample data) to
gain a lot in terms of reduced variance (generalisation to new data). This is a typical
example of the bias-variance trade-off in statistical modelling and machine learning,
where we often find that a bit of bias can lead to a much more robust and reliable
model.

Unlike some other regularisation methods, such as principal component regres-
sion, Ridge Regression maintains the interpretability of the coefficients in terms of
their relationship with the outcome. It is also versatile and can be applied to various
types of regression models, including linear and logistic regression.

9.2 lasso regression (l1 regularisation)

Lasso (Least Absolute Shrinkage and Selection Operator) regression employs a differ-
ent penalty term compared to Ridge Regression. Instead of squaring the coefficients,
Lasso Regression takes their absolute values. The cost function in Lasso Regression
is given in Equation Equation 5:

𝐿𝑙𝑎𝑠𝑠𝑜(𝛽) = 𝑛∑𝑖=1(𝑦𝑖 − 𝛽0 − 𝑝∑𝑗=1 𝛽𝑗𝑥𝑖𝑗)2 + 𝜆 𝑝∑𝑗=1 |𝛽𝑗| (5)

In Equation Equation 5, 𝐿𝑙𝑎𝑠𝑠𝑜(𝛽) is the Lasso Regression loss function. It in-
cludes the residual sum of squares (RSS) plus a penalty term 𝜆∑𝑝𝑗=1 |𝛽𝑗| (L1 norm).
This penalty term is the sum of the absolute values of the coefficients, scaled by the
regularisation parameter 𝜆 (similar to Ridge Regression). Lasso regression seeks

144 CHAPTER 9. REGULARISATION TECHNIQUES

the values of 𝛽0 through 𝛽𝑝 that minimise 𝐿𝑙𝑎𝑠𝑠𝑜(𝛽). As with Ridge Regression, the
intercept 𝛽0 is typically not included in the penalty term.

The strength of Lasso Regression lies in its ability to shrink some coefficients
all the way to zero, effectively eliminating those variables from the model. This
automatic variable selection makes Lasso Regression well-suited for creating sparse
models where only the most influential variables are retained. This simplification
aids in interpretation and can enhance model performance by reducing noise and
overfitting.

Lasso Regression still applies a degree of shrinkage for the coefficients that are
not shrunk to zero. Shrinkage reduces their variance and providemore stablemodels
that are less sensitive to fluctuations in the data. Similar to Ridge Regression, Lasso
involves a trade-off between bias and variance. The shrinkage introduces a small
bias but can greatly reduce variance and result in better overall predictions.

Lasso regression is useful when dealing with datasets that have a large number of
potential predictor variables. It helps identify the most relevant predictors. The end
results is a simpler and more interpretable model. If you suspect redundancy among
your predictor variables, Lasso can prune them and retain only those that provide
the best predictive value. As always, the optimal value for 𝜆 should be determined
through techniques like cross-validation.

9.3 elastic net regression

Elastic net regression is a hybrid regularisation technique that combines the penalties
of Ridge and Lasso Regression. It tries to provide the advantages of both methods
and mitigate their drawbacks.

Here, the penalty term is the weighted average of the L1 (Lasso) and L2 (Ridge)
penalties. A mixing parameter called alpha (𝛼) controls the weighting between
the two penalties. When 𝛼 = 0, Elastic Net is equivalent to Ridge Regression and
when 𝛼 = 1 it is equivalent to Lasso Regression. For values of 𝛼 between 0 and 1,
Elastic Net blends the properties of both methods and provides some flexibility to
regularisation.

The cost function in Elastic Net Regression is given in Equation 6:

𝐿𝑒𝑛𝑒𝑡(𝛽) = 𝑛∑𝑖=1(𝑦𝑖 − 𝛽0 − 𝑝∑𝑗=1 𝛽𝑗𝑥𝑖𝑗)2 + 𝜆(𝛼 𝑝∑𝑗=1 |𝛽𝑗| + (1 − 𝛼) 𝑝∑𝑗=1 𝛽2𝑗) (6)

Where 𝛼 is the mixing parameter, with 0 ≤ 𝛼 ≤ 1.
In Equation 6 there is the familiar RSS plus the combined penalty term that is

a weighted sum of the L1 and L2 norms. The objective of Elastic Net Regression is
again to minimise 𝐿𝑒𝑛𝑒𝑡(𝛽) by seeking optimal values of 𝛽1 through 𝛽𝑝.

Like the other regularisation techniques, Elastic Net is also used when you
have highly correlated predictors. While Lasso Regression might arbitrarily select
one variable from a group and ignore the rest, Elastic Net tends to select groups of
correlated features together and so provide a more comprehensive understanding
of variable importance. The flexibility of adjusting the 𝛼 parameter allows you to
fine-tune the regularisation to best suit your specific dataset and modelling goals.

9.4. CROSS-VALIDATION 145

It balances variable selection (Lasso) and shrinkage (Ridge). Also, Elastic Net can
outperform Lasso and Ridge Regression in terms of prediction accuracy when
dealing with high-dimensional datasets where the number of predictors exceeds
the number of observations.

Elastic net is a good option if you have a dataset with many potential predictor
variables and suspect strong correlations among them. Use it when you are un-
certain whether pure variable selection (Lasso) or pure shrinkage (Ridge) is the
best approach. The challenge is that now we also have to tune the 𝛼 parameter in
addition to the regularisation parameter 𝜆. A caveat is that Elastic Net retains the
interpretability of individual coefficients but the interpretation becomes slightly
more nuanced due to the mixed penalty term. This requires a thoughtful approach
to understanding the model outputs.

9.4 cross-validation

The values of the hyperparameters (𝜆 or 𝛼) significantly affect the model’s perfor-
mance and generalisation ability and so it necessitates careful optimisation. The
cv.glmnet() function (see Section 9.5) automates this process by performing both
hyperparameter tuning2 and cross-validation. It systematically evaluates different
combinations of 𝜆 or 𝛼 values across multiple subsets of our data, using cross-
validation to estimate their out-of-sample performance. This allows for the selection
of the hyperparameter combination that yields the best performance and thus avoids
the risk of overfitting and improves model generalisation.

The most widely used cross-validation method is k-fold cross-validation. The
dataset is divided into k equally sized subsets (specified by the user). The subsets
are called ‘folds’. The model is then trained k times, each time using k − 1 folds
for training and the remaining fold for validation. It provides a robust estimate of
model performance by utilising all data points for both training and validation. It
balances computational cost and bias reduction. But, the choice of k can influence
results, and there’s a trade-off between bias and variance: lower k values may lead
to higher bias but lower variance, whilst higher k values do the opposite.

The general approach taken in k-fold cross validation is that, for each combina-
tion of hyperparameter values, we:
1. Perform k-fold cross-validation on the training data.
2. Calculate the average performance metric (e.g., mean squared error) across all

folds.
3. Select the hyperparameter values that produced the best average performance.

This ensures that the hyperparameters we select are robust and generalissable
to unseen data, rather than being overly influenced by the peculiarities of a single
training set.

K-fold cross-validation is the most frequently-used form of cross-validation, but
several other types exist. Some of them are:

2. The goal of hyperparameter tuning is to find the optimal combination of hyperparameters that
leads to the best model performance on your specific dataset. This is done by systematically evaluating
different hyperparameter values and selecting the combination that yields the best results.

146 CHAPTER 9. REGULARISATION TECHNIQUES

Leave-one-out cross-validation (LOOCV) is an extreme case of k-fold cross-
validation where k equals the number of data points. This method trains the model
on all but one data point and validates on the left-out point, repeating this process for
each data point. LOOCVprovides an nearly unbiased estimate of model performance
but can be computationally expensive for large datasets. It’s most often used for
small datasets where maximising training data is important. The downside is that
LOOCV can suffer from high variance, especially for noisy datasets.

Stratified cross-validation ensures each fold maintains the same proportion of
samples for each class as in the complete dataset. It useful for imbalanced datasets
or when dealing with categorical outcomes. By preserving the class distribution in
each fold, stratified cross-validation provides a more representative evaluation of
model performance across all classes. Implementing stratification can be complex
for multi-class problems or continuous outcomes.

Holdout validation is the simplest form of cross-validation. The dataset is split
into a training set and a test set. Typically, about 70-80% of the data is used for training
and the balance is reserved for testing. The model is trained on the training set and
then evaluated on the held-out test set. It is computationally efficient and provides a
quick estimate of model performance but it has several limitations. Firstly, because
it doesn’t make full use of the available data for training, it can be an issue for smaller
datasets. Secondly, the results can be highly dependent on the particular split chosen,
leading to high variance in performance estimates. This is especially true for smaller
datasets or when the split doesn’t represent the overall data distribution well. But
holdout validation remains useful for large datasets or as a quick initial assessment
before applying more complex cross-validation techniques.

The examples will show k-fold cross validation, but you can easily adapt the
code to use other cross-validation methods.

9.5 r function

In R, the glmnet package provides functions for fitting regularised linear models.
The cv.glmnet() function performs cross-validated regularisation path selection
for the Elastic Net, Lasso, and Ridge Regression models.

cv.glmnet(x, y, alpha = 1, lambda = NULL, nfolds = 10,
standardize = TRUE)

The function takes the following arguments:
• x: A matrix of predictors.
• y: A matrix of response variables (but read the help file as this varies depending
on the data type).

• alpha: The mixing parameter for the Elastic Net penalty. When alpha = 0, the
model is a Ridge Regression. When alpha = 1, the model is a Lasso Regression.
The default value is alpha = 1.

• lambda: A vector of regularisation parameters. The function fits a model for each
value of lambda and selects the best one based on cross-validation. The default

9.6. EXAMPLE 1: RIDGE REGRESSION 147

is lambda = NULL, which means the function will generate a sequence of 100
values between 10^-2 and 10^2.

• nfolds: The number of folds in the cross-validation. The default is nfolds =
10.

• standardize: A logical value indicating whether the predictors should be stan-
dardised. The default is standardize = TRUE.
It is not clearly documented in the function’s help file, but the ‘glm’ in the

functionname indicates that the function fits a generalised linearmodel. This implies
‘gaussian,’ ‘binomial,’ ‘poisson,’ ‘multinomial,’ ‘cox,’ and ‘mgaussian’ families are
supported, which can be supplied via the family argument to the function. The ‘net’
part of the name indicates that the function fits an Elastic Net, thus allowing choose
between Lasso and Ridge by setting alpha to 1 or 0 (or something in-between). The
‘cv’ part of the name indicates that the function performs cross-validation.

9.6 example 1: ridge regression

The data I use here should bewell-known by now. They are the same seaweed dataset
used throughout Chapter 6. I will use Ridge Regression to predict the response
variable Y using the predictors annMean, augMean, augSD, febSD, and febRange.

First, I will read in the data and prepare them in the format required by
cv.glmnet(). This involves standardising the response variable and predictors
and converting them to matrices. I specify the range of 𝜆 values to try and set up 10-
fold cross-validation. I then fit the model and plot the results of the cross-validation.

Ridge Regression with Cross-Validation

Set seed for reproducibility
set.seed(123)

Load necessary libraries
library(glmnet)
library(tidyverse)

Read the data
sw <- read.csv("data/spp_df2.csv")

Standardise the response variable and present as a matrix
y <- sw ||>

select(Y) ||>
scale(center = TRUE, scale = FALSE) ||>
as.matrix()

Provide the predictors as a matrix
X <- sw ||>

select(-X, -dist, -bio, -Y, -Y1, -Y2) ||>
as.matrix()

148 CHAPTER 9. REGULARISATION TECHNIQUES

λmin λ1se

0.005

0.010

0.015

2

3

4

5

−4 0 4 8 12
log(λ)

M
ea

n
Sq

ua
re

d
Er

ro
r N

o. N
on−zero C

oef.

Figure 9.1. Cross-validation statistics for the Ridge Regression approach applied
to the seaweed data.

Set up lambda sequence
lambdas_to_try <- 10 ^ seq(-3, 5, length.out = 100)

Perform 10-fold cross-validation
ridge_cv <- cv.glmnet(X, y, alpha = 0, lambda = lambdas_to_try,
standardize = TRUE, nfolds = 10)

Plot cross-validation results (ggplot shown)
plot(ridge_cv)

Figure 9.1, generated from the cv.glmnet() object, illustrates the relationship
between the regularisation parameter 𝜆 and the model’s cross-validation perfor-
mance. The y-axis represents the mean squared error (MSE) from cross-validation,
whilst the x-axis shows the 𝑙𝑜𝑔(𝜆) values tested. Red dots indicate the mean MSE for
each 𝜆, with error bars showing ±1 standard error. Two vertical dashed lines high-
light important 𝜆 values: 𝜆𝑚𝑖𝑛, which minimises the meanMSE, and 𝜆1𝑠𝑒, the largest𝜆 within one standard error of the minimumMSE. One may select the optimal 𝜆 us-
ing either the 𝜆𝑚𝑖𝑛 or the 𝜆1𝑠𝑒 rule, accessible via cv.glmnet_object$lambda.min
and cv.glmnet_object$lambda.1se, respectively. To utilise the chosen 𝜆, one
refits the model using glmnet() and extract the coefficients.

For performance evaluation, one can calculate the sum of squared residuals
(SSR) as the sum of squared differences between observed and predicted values, and
the R-squared value as the square of the correlation between observed and predicted
values, representing the proportion of variance in the dependent variable that is
predictable from the independent variable(s).

The results show that the model explains 67.07% of the variance in the response

9.6. EXAMPLE 1: RIDGE REGRESSION 149

variable:

Fit models and calculate performance metrics
fit_model_and_calculate_metrics <- function(X, y, lambda) {

model <- glmnet(X, y, alpha = 0, lambda = lambda,
standardize = TRUE)

y_hat <- predict(model, X)
ssr <- sum((y - y_hat) ^ 2)
rsq <- cor(y, y_hat) ^ 2
list(model = model, ssr = ssr, rsq = rsq)

}

Best cross-validated lambda
lambda_cv <- ridge_cv$lambda.min
mod_cv <- fit_model_and_calculate_metrics(X, y, lambda_cv)

Print results
mod_cv
> $model
>
> Call: glmnet(x = X, y = y, alpha = 0, lambda = lambda, standardize = TRUE)
>
> Df %Dev Lambda
> 1 5 67.06 0.001
>
> $ssr
> [1] 5.321994
>
> $rsq
> s0
> Y 0.6706681

As already indicated, an alternative to using lambda.min for selecting the opti-
mal 𝜆 value is to use the 1 SE rule, which is contained in the attribute lambda.1se.
This reduces the risk of overfitting as it tends to select a simpler model. We can use
this value to refit the model and extract the coefficients, as before.

AIC and BIC can also be used to select suitable models. These information
criteria penalise the model for the number of parameters used, providing a balance
between model complexity and goodness of fit. The calculate_ic() function
below calculates the AIC and BIC for a given model and returns the results in a list.
We can then use this function to calculate the AIC and BIC for each model fit with
each 𝜆 in lambdas_to_try:

Calculate AIC and BIC
calculate_ic <- function(X, y, lambda) {

model <- glmnet(X, y, alpha = 0, lambda = lambda,
standardize = TRUE)

150 CHAPTER 9. REGULARISATION TECHNIQUES

betas <- as.vector(coef(model)[-1])
resid <- y - (scale(X) %*% betas)
H <- scale(X) %*%

solve(t(scale(X)) %*% scale(X) + lambda *
diag(ncol(X))) %*% t(scale(X))

df <- sum(diag(H))
log_resid_ss <- log(sum(resid ^ 2))
aic <- nrow(X) * log_resid_ss + 2 * df
bic <- nrow(X) * log_resid_ss + log(nrow(X)) * df
list(aic = aic, bic = bic)

}

ic_results <- map(lambdas_to_try, ~ calculate_ic(X, y, .x)) ||>
transpose()

A plot of the change in the information criteria with 𝑙𝑜𝑔(𝜆) is shown in Figure 9.2.
The optimal 𝜆 values according to both AIC and BIC can then be used to refit the
model and arrive at the coefficients of interest.

Plot information criteria
plot_ic <- function(lambdas, ic_results) {
df <- data.frame(lambda = log(lambdas),

aic = unlist(ic_results$aic),
bic = unlist(ic_results$bic))

df_long <- pivot_longer(df, cols = c(aic, bic),
names_to = "criterion",
values_to = "value")

ggplot(df_long, aes(x = lambda, y = value, color = criterion)) +
geom_line() +
scale_color_manual(values = c("aic" = "orange", "bic" = "skyblue3"),

labels = c("aic" = "AIC", "bic" = "BIC")) +
labs(x = "log(lambda)",

y = "Information Criterion", color = "Criterion") +
theme_minimal() +
theme(legend.position = "top",

legend.direction = "horizontal",
legend.box = "horizontal")

}

plot_ic(lambdas_to_try, ic_results)

Now we find the 𝜆 values that minimise the AIC and BIC, and refit the models
using these values. It so happens that both AIC and BIC selects the same 𝜆 values:

9.6. EXAMPLE 1: RIDGE REGRESSION 151

2000

2500

3000

3500

−4 0 4 8 12
log(lambda)

In
fo

rm
at

io
n

C
rit

er
io

n
Criterion AIC BIC

Figure 9.2. Plot of information criteria for best model fit selected through Ridge
Regression.

Optimal lambdas according to both criteria
lambda_aic <- lambdas_to_try[which.min(ic_results$aic)]
lambda_bic <- lambdas_to_try[which.min(ic_results$bic)]

Fit final models using the optimal lambdas
mod_aic <- fit_model_and_calculate_metrics(X, y, lambda_aic)
mod_bic <- fit_model_and_calculate_metrics(X, y, lambda_bic)

For interest sake, we may also produce a plot that traces the coefficients of
the model as 𝜆 changes. This can help us understand how the coefficients shrink
as 𝜆 increases, and which variables are most important in the model. The plot
below shows the Ridge Regression coefficients path for each variable in the model
(Figure 9.3).

Plot the Ridge Regression coefficients path
res <- glmnet(X, y, alpha = 0, lambda = lambdas_to_try,

standardize = FALSE)
plot(res, xvar = "lambda")
legend("topright", lwd = 1, col = 1:6,

legend = colnames(X), cex = 0.7)

So, after having demonstrated the different methods for selecting the optimal 𝜆
value, we can now summarise the results:

> [1] "CV Lambda: 0.001"
> [1] "AIC Lambda: 0.3854"
> [1] "BIC Lambda: 0.3854"
> [1] "CV R-squared: 0.6707"
> [1] "AIC R-squared: 0.6025"
> [1] "BIC R-squared: 0.6025"

152 CHAPTER 9. REGULARISATION TECHNIQUES

−5 0 5 10

0.
00

0.
15

Log Lambda

C
oe

ffi
ci

en
ts

5 5 5 5

augMean
febRange
febSD
augSD
annMean

Figure 9.3. Plot of the Ridge Regression coefficients paths.

Now we can extract the coefficient produced from models selected via the AIC
and CVmethods.

res_aic <- glmnet(X, y, alpha = 0, lambda = lambda_aic,
standardize = FALSE)

res_aic
>
> Call: glmnet(x = X, y = y, alpha = 0, lambda = lambda_aic, standardize = FALSE)
>
> Df %Dev Lambda
> 1 5 13.46 0.3854
coef(res_aic)
> 6 x 1 sparse Matrix of class "dgCMatrix"
> s0
> (Intercept) -0.021327121
> augMean 0.009856026
> febRange 0.007118466
> febSD -0.001074341
> augSD 0.010696102
> annMean 0.008114467

res_cv <- glmnet(X, y, alpha = 0, lambda = lambda_cv,
standardize = FALSE)

res_cv
>
> Call: glmnet(x = X, y = y, alpha = 0, lambda = lambda_cv, standardize = FALSE)
>
> Df %Dev Lambda
> 1 5 66.77 0.001

9.7. EXAMPLE 2: LASSO REGRESSION 153

coef(res_cv)
> 6 x 1 sparse Matrix of class "dgCMatrix"
> s0
> (Intercept) -0.12384440
> augMean 0.22200994
> febRange 0.04287655
> febSD -0.03446642
> augSD 0.02699458
> annMean 0.04324177

Ridge regression adds a penalty to the size of the coefficients, resulting in their
shrinkage towards zero. This penalty affects all coefficients simultaneously. Notably,
there is a difference in the model fit obtained using 𝜆𝐴𝐼𝐶 (which is larger) and 𝜆𝑚𝑖𝑛
(which is smaller). The former model explains 55.69% of the variance, compared to𝜆𝑚𝑖𝑛, which explains 63.37% of the variance.

Although shrinkage affects the absolute magnitude of the coefficients (they are
biased estimates of the true relationships between the predictors and the response
variable), the coefficients in Ridge Regression retain their general meaning—they
still represent the change in the response variable associated with a one-unit change
in the predictor variable, holding other predictors constant.While the absolute values
of the coefficients may be biased due to regularisation, the relative importance of
the predictors can still be interpreted. The magnitude of the coefficients can indicate
the relative influence of each predictor on the response variable, even if their exact
values are reduced.

Importantly, the predictive ability of the model can improve with shrunk co-
efficients because Ridge Regression reduces overfitting and enhances the model’s
generalisability to new, unseen data. By stabilising the coefficient estimates, the
model often achieves better performance on validation and test datasets, which is
important should robust predictive analytics be the goal.

9.7 example 2: lasso regression

Doing a Lasso Regression is easy. Simply change the alpha parameter to 1 in the
glmnet function. The rest of the code remains the same. I’ll show only the final
output of this analysis to avoid repetition.

Print results
mod_cv
> $model
>
> Call: glmnet(x = X, y = y, alpha = 1, lambda = lambda, standardize = TRUE)
>
> Df %Dev Lambda
> 1 5 67 0.001
>
> $ssr

154 CHAPTER 9. REGULARISATION TECHNIQUES

λmin

λ1se

0.000

0.005

0.010

0.015

0

2

4

−4 0 4 8 12
log(λ)

M
ea

n
Sq

ua
re

d
Er

ro
r N

o. N
on−zero C

oef.

Figure 9.4. Cross-validation statistics for Lasso Regression applied to the seaweed
data.

> [1] 5.332835
>
> $rsq
> s0
> Y 0.6701255
coef(mod_cv$model)
> 6 x 1 sparse Matrix of class "dgCMatrix"
> s0
> (Intercept) -0.12886019
> augMean 0.26097296
> febRange 0.03431981
> febSD -0.02497532
> augSD 0.02441380
> annMean 0.02021480

Print results
print(paste("CV Lambda:", lambda_cv))
> [1] "CV Lambda: 0.001"
print(paste("CV R-squared:", round(mod_cv$rsq, 4)))
> [1] "CV R-squared: 0.6701"

Lasso regression incorporates an L1 penalty term in its cost function, which
shrinks some coefficient estimates to exactly zero. By reducing certain coefficients to
zero, Lasso effectively eliminates those predictors from the model, which achieves
automatic variable selection:
• When 𝜆 is small, the penalty is minimal, and Lasso behaves similarly to ordinary
least squares regression, retaining most coefficients.

• When 𝜆 is large, the penalty increases, causing more coefficients to shrink to zero.

9.8. EXAMPLE 3: ELASTIC NET REGRESSION 155

−5 0 5 10

0.
00

0.
15

Log Lambda

C
oe

ffi
ci

en
ts

4 0 0 0

augMean
febRange
febSD
augSD
annMean

Figure 9.5. Plot of the Lasso Regression coefficients paths.

This results in a sparser model where only the most significant predictors have
non-zero coefficients.
In our example (Figure 9.4), we see at 𝜆𝑚𝑖𝑛, the number of non-zero coefficients is

minimised—all five coefficients remain. At 𝜆1𝑠𝑒, the number of non-zero coefficients
decreases to four. Consequently, for higher values of 𝜆, more predictors will have
coefficients exactly equal to zero. This is also seen in Figure 9.4. In Figure 9.5 we can
see that the first predictor to reach zero is annMean, then febSD, febRange, and
so forth. The implication is that they are excluded from the model and the model
is simplified. This leads to several benefits: reduced multicollinearity, improved
interpretability, and better generalisation to new data.

Coefficients that remain non-zero after Lasso regularisation are considered more
important predictors. Those remaining coefficients can be interpreted similarly to
standard linear regression: as the expected change in the response variable for a
one-unit change in the predictor, holding other predictors constant.

The 𝜆 parameter controls the amount of bias introduced. While Lasso can pro-
duce biased estimates, it reduces variance, often resulting in a model that performs
better on new, unseen data. This trade-off enhances predictive accuracy but means
that the exact coefficient values may not represent the true underlying relationships
as closely as those in an unregularised model.

Despite regularisation, the relative magnitudes of the non-zero coefficients pro-
vide a glimpse into predictor importance. Larger absolute values of coefficients
indicate stronger relationships with the response variable. The exact numerical val-
ues are biased, but ranking predictors by their coefficients still offers useful insight
into their relative importance.

9.8 example 3: elastic net regression

In this last example we’ll look at Elastic Net Regression, which combines the L1
and L2 penalties of Lasso and Ridge Regression. There are now two parameters to

156 CHAPTER 9. REGULARISATION TECHNIQUES

optimise: 𝛼 and 𝜆. The 𝛼 parameter controls the mix between the L1 and L2 penalties,
with 𝛼 = 0 behaving like Ridge Regression and 𝛼 = 1 behaving like Lasso Regression.
For 𝛼 values between 0 and 1, Elastic Net combines the strengths of both Lasso and
Ridge Regression. Optimisation of 𝛼 and 𝜆 is also done using cross-validation. In
practise, the steps are:
1. Set up a grid of 𝛼 values (from 0 to 1) and 𝜆 values to try.
2. Performs cross-validation for each combination of 𝛼 and 𝜆 using cv.glmnet().
3. Select the best 𝛼 and 𝜆 combination based on the minimummean cross-validated

error.
4. Fit the final model using the best 𝛼 and 𝜆.
5. Calculate the performance metrics.
6. For the Elastic Net model with the best alphaCreate plots similar to those in the

Ridge and Lasso examples.

Define the range of alpha values to try
alphas_to_try <- seq(0, 1, by = 0.1)

Define the range of lambda values to try
lambdas_to_try <- 10^seq(-3, 3, length.out = 100)

Perform grid search with cross-validation
cv_results <- lapply(alphas_to_try, function(a) {
cv.glmnet(X, y, alpha = a, lambda = lambdas_to_try,

standardize = TRUE, nfolds = 10)
})

Find the best alpha and lambda
best_result <- which.min(sapply(cv_results, function(x) min(x$cvm)))
best_alpha <- alphas_to_try[best_result]
best_lambda <- cv_results[[best_result]]$lambda.min

Fit the final model with the best parameters
final_model <- glmnet(X, y, alpha = best_alpha,

lambda = best_lambda,
standardize = TRUE)

Calculate performance metrics
y_hat <- predict(final_model, X)
ssr <- sum((y - y_hat) ^ 2)
rsq <- cor(y, y_hat) ^ 2

> [1] "Best Alpha: 0.3"
> [1] "Best Lambda: 0.001"
> [1] "R-squared: 0.6706"

The model coefficients are:

9.8. EXAMPLE 3: ELASTIC NET REGRESSION 157

λmin0.000

0.005

0.010

0.015

0

2

4

−4 0 4
log(λ)

M
ea

n
Sq

ua
re

d
Er

ro
r N

o. N
on−zero C

oef.
Elastic Net (alpha = 0.3)

Figure 9.6. Cross-validation statistics for Elastic Net Regression applied to the
seaweed data.

−6 −4 −2 0 2 4 6

0.
00

0.
15

Log Lambda

C
oe

ffi
ci

en
ts

5 5 1 0 0 0 0

augMean
febRange
febSD
augSD
annMean

Figure 9.7. Plot of the Elastic Net Regression coefficients paths.

158 CHAPTER 9. REGULARISATION TECHNIQUES

coef(cv_results[[best_result]])
> 6 x 1 sparse Matrix of class "dgCMatrix"
> s1
> (Intercept) -0.117063010
> augMean 0.240447330
> febRange 0.015404286
> febSD -0.007224065
> augSD 0.014882111
> annMean 0.026504736

The interpretation of coefficients in Elastic Net is a blend of Ridge and Lasso.
Some coefficients may be shrunk to zero (feature selection), while others are shrunk
but remain non-zero (magnitude reduction). The non-zero coefficients retain their
general meaning with an emphasis on their relative importance.

9.9 theory-driven and data-driven variable selection

The choice between theory-driven and data- or statistics-driven variable selection
represents an important consideration that can greatly influence model interpre-
tation, its predictive power, and your value as an ecologist. This decision reflects
a broader tension in scientific methodology between deductive and inductive rea-
soning. Each offers advantages and limitations that you should be aware of as an
ecologist.

Theory-driven variable selection is core to the scientific method. It relies on a
priori knowledge and established ecological theories (as far as they exist in ecology!)
to guide your choice of predictors in amodel. This aligns closelywith the hypothetico-
deductivemethod, where we formulate hypotheses based on existing knowledge and
subsequently test these against the datawe collect. The strength of thismethod lies in
its interpretability. Models built on theoretical foundations often contribute directly
to testing and refining ecological hypotheses. By focusing on variables with known
or hypothesised relationships (with mechanisms often rooted in ecophysiological or
ecological inquiries), the theory-driven hypothetico-deductive method should lead
to more parsimonious models that are less prone to overfitting and more reflecting
of reality.

Theory-driven selection is not without its drawbacks. It requires that we have a
good grasp of the mechanism underlying our favourite ecological system. This is not
always the case in complex systems where the underlying mechanisms are not well
understood. Theory-driven selection can then lead to the exclusion of important
variables that were not initially hypothesised and it can limit the scope of the analysis
and potentially overlook significant relationships in the data.

A naive young ecologist might place undue value on the notion that their hard
work collecting diverse data and developing hypotheses should all be reflected in
their final model. This can lead to confirmation bias, where one is more likely to
select variables that support our hypotheses and ignore those that do not. This bias
can compromise the objectivity of the model and lead to skewed results that do not
accurately represent the underlying ecological processes.

9.9. THEORY-DRIVEN AND DATA-DRIVEN VARIABLE SELECTION 159

Moreover, the insistence on including all variables that were initially considered
important can result in overly complex models. Such models can be difficult to
interpret and may suffer from overfitting, where the model captures noise rather
than the true signal in the data. Overfitted models perform well on the data we
collected but poorly on new, unseen data. The consequence is a loss of predictive
power and generalisability.

Another weakness of theory-driven variable selection is that the reliance on
existing theories or the novel, promising hypothsis of the daymay lead us to overlook
important but unexpected relationships in the data. In complex ecological systems,
where our theoretical understanding may be incomplete, some variables could be
missed entirely—these might in fact hold the key to the real cause of the ecological
patterns we observe. This limitation becomes concerning when studying ecosystems
or phenomena that are not well understood or are undergoing rapid changes, such
as those affected by climate change or novel anthropogenic pressures.

On the other hand, data-driven approaches, including regularisation techniques,
VIF, and forward model variable selection (Chapter 6), allow the data itself to
guide variable selection. These methods are increasingly used in today’s era of
high-dimensional datasets common in modern ecological research. The primary
advantage of data-driven selection lies in its potential for discovery—it can un-
cover unexpected relationships and generate new hypotheses, which is valuable in
complex ecological systems where interactions may not be immediately apparent.

Data-driven methods are well-suited for handling the complexity often encoun-
tered in environmental and ecological datasets, where numerous potential predictors
may co-occur and interact. They offer a degree of objectivity, reducing the potential
for our personal biases in variable selection. But these approaches are not without
risks. There’s a danger of identifying relationships that are statistically significant
but ecologically meaningless—we refer to this as spurious correlations (e.g. the
belief that consuming carrots significantly improves our night vision). Moreover,
models with many variables can present significant interpretability challenges, es-
pecially when complex interactions are present. This can make it difficult to extract
meaningful (plausible) insights from the model and to communicate results to a
broader audience.

In practice, the most robust approach to selecting which of the multitude of
variables to include in our model often involves a thoughtful combination of theory-
driven and data-driven methods. Well-trained ecologists should start with theory-
driven variable selection to identify the core predictors based on established ecologi-
cal principles. We could then employ regularisation techniques to explore additional
variables and potential interactions, and use the results to refine our models and
generate new hypotheses for future research.

This hybrid approach combines the strengths of both methods. It allows for
rigorous hypothesis testing while remaining open to unanticipated and new insights
from the data. In ecology, where systems are often characterised by complex, non-
linear relationships and interactions thatmay vary across spatial and temporal scales,
this two-pronged approach offers distinct benefits.

Consider how these methods complement theoretical knowledge. Use variable
selection methods as tools for prediction, and to assit generating new insights and

160 CHAPTER 9. REGULARISATION TECHNIQUES

hypotheses about ecosystems. The choice between theory-driven and data-driven
variable selection is not a binary one, but rather a spectrum of approaches.

