
Chapter 3

Linear Regression

Linear models are frequently used statistical tools that all biologists should know. They describe
and quantify relationships between variables and are widely employed to predict the value of
a dependent variable (or response variable, 𝑌) based on the values of one or more independent
variables (or predictor variables, 𝑋). A linear model is an equation where the relationship between
the dependent variable and the independent variables is linear in the parameters (though not
necessarily in the variables themselves), allowing us to predict the dependent variable from the
predictors. In statistics, models are mathematical representations or descriptions of real-world
processes or systems. They offer idealised and simplified representations of reality and capture
the essential features and relationships we find interesting.

Regression analysis is a statistical technique used to estimate the parameters of the model that
best describes the relationship between a dependent variable and one or more independent
variables. The primary goal of regression analysis is to fit the model to the observed data and offer
insights into the strength and nature of the relationships between variables.

One of the simplest forms of linear models is the simple linear model, which is the topic of
this chapter. A simple linear model estimates model parameters through the process of simple
linear regression (SLR). SLR involves a single independent variable and is often applied when the
independent variable is hypothesised to causally influence the dependent variable. However, a
causal relationship is not a strict requirement. The primary goal of SLR may simply be to derive
a formula (model) that predicts the values of the dependent variable based on the independent
variable, regardless of whether a causal relationship exists between them.

SLR serves as a foundational regression technique that extends to more complex forms, including
polynomial regression (Chapter 4), multiple linear regression (MLR) (Chapter 5), and generalised
linear models (GLMs) (Chapter 6). Polynomial regression includes polynomial terms (higher pow-
ers of the independent variable, like 𝑋2, 𝑋3, etc.) to model curvilinear relationships, while MLR
involves multiple independent variables to describe more complex relationships where the de-
pendent variable is influenced by several predictors simultaneously. GLMs further extend these
concepts to handle various types of dependent variables (besides responses drawn from the
normal distribution) and relationships (e.g. logistic).

In cases where prediction is not the primary objective, and causation is neither expected nor im-
plied, but one variable exhibits a systematic change with another, correlation analysis (Chapter 2)
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26 CHAPTER 3. LINEAR REGRESSION

is a more appropriate technique.

The terminology surrounding linear models and linear regression can sometimes be confusing
because we often use terms like ‘linear model,’ ‘linear regression,’ and ‘least squares regression’
interchangeably. But ‘linear model’ is a broader term that encompasses various types of linear
relationships, including simple linearmodels, multiple linearmodels, polynomial models, and GLMs.
In this section, youwill learn about simple linear models and regression analysis, whichwill provide
you with the foundational knowledge to understand more complex linear models and regression
techniques.

3.1 Simple Linear Regression
Linear models help us answer questions like:

• How does body mass change with age in a particular species?
• Does the number of offspring depend on the amount of food available?
• How does a species’ geographic distribution change with temperature?

By assuming a linear relationship between variables, thesemodels provide a clear and interpretable
way to quantify and predict biological outcomes. For example, should a linear model describe the
relationship between body mass (g) and age (years), we can predict the body mass of a particular
species of fish would increase by 230 g for every additional year of age up to the age of five years
(however, please see the von Bertalanffy model in Chapter 7.6).

The simple linear model is given by: 𝑌𝑖 = 𝛽 ⋅ 𝑋𝑖 + 𝛼 + 𝜖 (3.1)

Where:

• 𝑌𝑖 is the 𝑖-th measurement of the dependent variable,
• 𝑋𝑖 is the 𝑖-th measurement of the independent variable,
• 𝛼 is the intercept (the value of 𝑌when 𝑋 = 0),
• 𝛽 is the slope (the change in 𝑌 for a one-unit change in 𝑋), and
• 𝜖 is the error term (residual; see box ‘The residuals, 𝜖𝑖’).
INFO The residuals, 𝜖𝑖
In most regression models, such as linear regressions and those discussed in Chapter 7, we
assume that the residuals are independent and identically distributed (i.i.d.). This implies that
each residual 𝜖𝑖 is drawn from the same probability distribution and that they are mutually
independent. When the residuals follow a normal distribution, this can be expressed as𝜖𝑖 ∼ 𝑁(0, 𝜎2), where:
• 𝜖𝑖 represents the residual for the 𝑖-th observation,
• 𝑁(0, 𝜎2) denotes a normal distribution with a mean of 0 and a variance of 𝜎2.

The requirement of a zero mean for residuals implies that, on average, the model’s predic-
tions neither systematically overestimate nor underestimate the true values. The constant
variance assumption ensures that the spread or dispersion of residuals around the mean
remains consistent across all levels of the predictor variables. This ensures that the model’s
accuracy is uniform across the range of data.



3.2. NATURE OF THE DATA 27

The requirement for independence indicates that the residual for any given observation is
not influenced by or correlated with the residuals of other observations. It also means that
the residual for an observation does not depend on the order in which the observations
were collected (i.e. no serial correlation or auto-correlation). Independence ensures that
each data point contributes unique information to the model and prevents any systematic
patterns from influencing the estimates of the model’s parameters.
Violation of any of these assumptions could lead to biased or inefficient parameter estimates.

3.2 Nature of the Data

The experimenter must ensure the following key requirements for a simple linear regression:

1. Causality:There should be a theoretical or philosophical basis for expecting a causal relation-
ship, where the independent variable (𝑋) influences or determines the dependent variable
(𝑌).1 It is assumed that changes in 𝑋 cause changes in 𝑌.

2. Independence of Observations:

• The observations or measured values of 𝑌must be independent of each other. For each
value of 𝑋, there should be only one corresponding value of 𝑌, or if there are replicate𝑌 values, they must be statistically independent and not influence each other.

• The observations of 𝑌 must also be independently across the range of 𝑋 values. This
means that the value of 𝑌 at one point should not influence the value of 𝑌 at another
point.2

3. Independent Variable Scale: The independent variable (𝑋) should be measured on a contin-
uous scale, such as integers, real numbers, intervals, or ratios.

4. Dependent Variable Scale: Similarly, the dependent variable (𝑌) should also be measured on
a continuous scale, such as integers, real numbers, intervals, or ratios.3

What if my data are not continuous?

• If the independent variable is ordinal, use ordinal regression.
• If the dependent variable is ordinal, use ordinal (logistic) regression.

What if I have more than one independent variable?

• Use multiple linear regression.

Additional assumptions and requirements are discussed next in Section 3.3.

1The independent and dependent variables are also called the predictor and response variables, respectively. The
predictor is often under the experimenter’s control (in which case it is a fixed effects model), while the response is the
variable predicted to respond in the manner hypothesised.

2If 𝑌 not independent across the range of 𝑋, use a different type of regression model, such as a linear mixed-effects
model.

3The dependent variable can also be ordinal, but this is less common. If this is the case, use *ordinal (logistic) regression
instead.
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3.3 Assumptions
The following assumptions are made when performing a simple linear regression; 1-3 must be
tested after fitting the linear model:

1. Normality: For each value of𝑋, there is a corresponding normal distribution of 𝑌 values. Each
value of 𝑌 is randomly sampled from this normal distribution.

2. Homoscedasticity:The variances of the 𝑌 distributions corresponding to each 𝑋 value should
be approximately equal.

3. Linearity: There exists a linear relationship between the variables 𝑌 and 𝑋.
4. Measurement Error: It is assumed that the measurements of 𝑋 are obtained without error.
However, in practical scenarios, this is rarely the case. Therefore, we assume any measure-
ment error in 𝑋 to be negligible.

See Section 3.8 for more information about how to proceed when assumptions 1-3 are violated.

3.4 Outliers and Their Impact on Simple Linear Regression
In simple linear regression, outliers can have significant detrimental effects on the analysis and
the reliability of the results. Outliers are data points that deviate substantially from the overall
pattern or trend observed in the data, and their presence can lead to biased parameter estimates,
inflated standard errors, distorted confidence and prediction intervals, violation of assumptions,
and masking of underlying patterns.

Specifically, they can greatly impact the estimation of the slope and intercept due to their influ-
ence on the process of minimising the sum of squared residuals. Their presence can increase the
standard errors of the regression coefficients, making it harder to detect significant relationships
between the independent and dependent variables. Furthermore, the inclusion of outliers in the
dataset can distort the calculation of confidence and prediction intervals for individual observa-
tions, preventing accurate inference and prediction. Their presence may also lead to violations of
the assumptions of linear regression, such as the normality of residuals and the constant variance
of errors (homoscedasticity). Lastly, extreme outliers can mask underlying patterns or relationships
in the data and hinder our ability to discern the true nature of the associations between variables.

3.5 R Function
The lm() function in R is used to fit linear models. It can be used to carry out simple linear
regression, multiple linear regression, and more.

The general form of the function written in R is:

lm(formula, data, ...)

where formula is a symbolic description of the model to be fitted, and data is the data frame
containing the variables. The ... argument is used to pass additional arguments to the function
(consult ?lm). For example:

lm(y ~ x, data = df) 1
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1 You can read the statement y ~ x as “y is modelled as a function of x.”

The above statement fits a simple linear regression model with y as the dependent variable and x
as the independent variable. The data frame df contains the variables named x and y.

3.6 Example: The Penguin Dataset
The following example workflow uses the penguin dataset from the palmerpenguins package
to demonstrate how to perform a simple linear regression in R. The data are in Table 3.1.

Althoughwe can also do a correlation here, wewill use a simple linear regression becausewewant
to develop a predictive model that can be used to estimate the bill length ofAdelie penguins based
on their body mass—this is a permissible application of a simple linear regression even though the
two variables are not assumed to be causally related.

Table 3.1: Size measurements for adult foraging Adelie penguins near Palmer Station, Antarctica.

Bill length (mm) Body mass (g)
39.1 3750
39.5 3800
40.3 3250
36.7 3450
39.3 3650
38.9 3625

3.6.1 Do an Exploratory Data Analysis (EDA)

dim(Adelie)

[1] 151 8

summary(Adelie)

species island bill_length_mm bill_depth_mm
Adelie :151 Biscoe :44 Min. :32.10 Min. :15.50
Chinstrap: 0 Dream :56 1st Qu.:36.75 1st Qu.:17.50
Gentoo : 0 Torgersen:51 Median :38.80 Median :18.40

Mean :38.79 Mean :18.35
3rd Qu.:40.75 3rd Qu.:19.00
Max. :46.00 Max. :21.50

flipper_length_mm body_mass_g sex year
Min. :172 Min. :2850 female:73 Min. :2007
1st Qu.:186 1st Qu.:3350 male :73 1st Qu.:2007
Median :190 Median :3700 NA's : 5 Median :2008
Mean :190 Mean :3701 Mean :2008
3rd Qu.:195 3rd Qu.:4000 3rd Qu.:2009
Max. :210 Max. :4775 Max. :2009
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Figure 3.1: Scatter plot of the Palmer Station Adelie penguin data with a best fit line.

We see that the dataset contains 344 observations of 8 variables. We shall focus on the
body_mass_g and bill_length_mm variables for this example. Importantly, the two variables
are continuous, which seems to satisfy the requirements for a simple linear regression. We will
also restrict this analysis to the Adelie penguins (𝑛 = 152). Is the relationship between the body
mass and bill length of the penguins linear? Let’s find out.

3.6.2 Create a Plot
Construct a scatter plot of the data and include a best fit straight line:

ggplot(Adelie,
aes(x = body_mass_g, y = bill_length_mm)) +

geom_point() +
geom_smooth(method = "lm", se = FALSE) +
labs(x = "Body mass (g)", y = "Bill length (mm)") +
theme_minimal()

Although there is some scatter in the data (Figure 3.1), there appears to be a positive relationship
between the body mass and bill length of the penguins. This relationship might be amenable for
modelling with a linear relationship and we shall continue to explore this.

3.6.3 State the Hypothesis
• Null Hypothesis (𝐻0): there is no relationship between the body mass of the penguins and
their bill length.

• Alternative Hypothesis (𝐻𝐴): there is a relationship between the two variables.
This can be written as: 𝐻0 ∶ 𝛽 = 0 (3.2)

As seen above, this hypothesis concerns the slope of the regression line, 𝛽. If the slope is zero, then
there is no relationship between the two variables. Regression models also tests an hypothesis
about the intercept, 𝛼, but this is less commonly reported.
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3.6.4 Fit the Model
Since the assumptions of a linear regression can only be tested after fitting the model, we first fit
the model and then test the assumptions.

mod1 <- lm(bill_length_mm ~ body_mass_g,
data = Adelie)

summary(mod1)

Call:
lm(formula = bill_length_mm ~ body_mass_g, data = Adelie)

Residuals:
Min 1Q Median 3Q Max

-6.4208 -1.3690 0.1874 1.4825 5.6168

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.699e+01 1.483e+00 18.201 < 2e-16 ***
body_mass_g 3.188e-03 3.977e-04 8.015 2.95e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.234 on 149 degrees of freedom
Multiple R-squared: 0.3013, Adjusted R-squared: 0.2966
F-statistic: 64.24 on 1 and 149 DF, p-value: 2.955e-13

3.6.5 Test the Assumptions
Assumptions of normality, homoscedasticity, and linearity must be tested (Section 7.3).

We already noted that a linear model will probably be appropriate for the data (see Figure 3.1), so
we proceed with the other assumptions.

To facilitate the production of the diagnostic plots, we will use the broom package’s augment()
function to add the residuals to the data within the original dataset (now appearing as the tidied
dataset, mod1_data). This will allow us to create the diagnostic plots more easily, and later we
can also use it to look for the presence of outliers (Section 3.6.6).

library(broom)

mod1_data <- augment(mod1)

Normality

I first check the normality assumption using one of several options (Options 1-3). Here I use the
Shapiro-Wilk test, a Residual Q-Q plot, and a histogram of the residuals.

Option 1: Perform the Shapiro-Wilk test on the residuals. The Shapiro-Wilk test is useful for
detecting departures from normality in small sample sizes. The hypothesis is:
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Figure 3.2: Diagnostics plots the linear regression, mod1, for assumption testing.

• H0: the residuals are normally distributed.
• HA: the residuals are not normally distributed.

shapiro.test(residuals(mod1))

Shapiro-Wilk normality test

data: residuals(mod1)
W = 0.99613, p-value = 0.9637

The p-value is greater than 0.05, so I reject the alternative hypothesis. I conclude that the residuals
are normally distributed.

Option 2: Create a Residual Q-Q plot to visually assess the normality of the residuals:

The residuals are plotted against a theoretical normal distribution. The residuals fall along the line
without major deviations, therefore the residuals are normally distributed (Figure 3.2 A).

Option 3: Create a histogram of the residuals to visually assess the normality of the residuals:

The histogram of the residuals appears to be normally distributed (Figure 3.2 B).

Homoscedasticity

I now examine the homoscedasticity assumption. The residuals should be approximately equal
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across all values of the independent variable. There are several options.

Option 1: I will use the Breusch-Pagan test to test for homoscedasticity.

The Breusch-Pagan test is used to assess the presence of heteroscedasticity (non-constant vari-
ance) in the residuals of a regression model.

The hypothesis is:

• H0: the residuals are homoscedastic.
• HA: the residuals are heteroscedastic.

library(lmtest)
bptest(mod1)

studentized Breusch-Pagan test

data: mod1
BP = 1.6677, df = 1, p-value = 0.1966

The p-value is greater than 0.05, so I reject the alternative hypothesis. I conclude that the residuals
are homoscedastic.

Option2: Create a plot of the residuals against the fittedvalues to visually assess homoscedasticity:

The residuals are scattered evenly around zero from short through to long bill lengths, indicating
that the residuals have constant variance (Figure 3.2 C).

Option 3: Create a plot of the standardised residuals against the independent variable to visually
assess homoscedasticity:

The residuals are scattered evenly around zero from low through to high bill lenghts, indicating
that the residuals have constant variance (Figure 3.2 D).

Other tests for homoscedasticity include the Goldfeld-Quandt (lmtest::gqtest) test, Levene’s
test (car::leveneTest), and others.

3.6.6 Check for outliers
How do we identify outliers in linear regression analysis? There are several approaches (see Fig-
ure 3.3):

1. Difference in Fits (DFFITS): DFFITS is a measure of the impact of each observation on
the predicted values (fitted values) of the model. It quantifies how much the predicted
values would change if an observation were removed from the analysis. DFFITS values >
Threshold = 2√ 𝑝𝑛 indicate observations that have a substantial impact on the predicted
values and may be influential or outliers. Here, 𝑝 is the number of parameters in the model
(including the intercept, i.e. 2 in a simple linear regression) and 𝑛 is the number of observa-
tions.

2. Cook’s Distance Plot: Cook’s distance is a measure of the influence of each observation
on the estimated regression coefficients. The Cook’s distance plot shows the Cook’s dis-
tance values for each observation against the row numbers (or observation numbers). Points
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with large Cook’s distance values (typically greater than 4𝑛 ) indicate observations that are
potentially influential and may have a significant impact on the regression results.

3. Residuals vs Leverage Plot: This plot displays the standardised residuals against the lever-
age values (hat values) for each observation. Leverage values measure the influence of an
observation on the fitted values (predicted values) of the model. The plot helps identify
outliers and influential observations. Points with high leverage (typically greater than 2-3
times the average leverage) and large residuals are considered influential observations that
may warrant further investigation or potential removal from the analysis.

4. Cook’s Distance vs Lev./(1-Lev.) Plot: This plot combines information from Cook’s distance
and leverage values. The x-axis represents the leverage values divided by (1 minus the
leverage values), which is a transformation that spreads out the points for better visualisation.
The y-axis shows the Cook’s distance values. This plot helps identify influential observations
by considering both their impact on the regression coefficients (Cook’s distance) and their
influence on the fitted values (leverage). Points in the top-right corner of the plot indicate
observations that are potentially influential and may require further examination or removal.

cooksd_thresh <- 4 / nrow(mod1_data) 1

dffits_threshold <- 2 * sqrt(2 / nrow(Adelie)) 2

mod1_data <- mod1_data %>%
mutate(index = row_number(),

leverage = hatvalues(mod1),
dffits = dffits(mod1),
colour = ifelse(.cooksd > cooksd_thresh, "black", "pink"))

1 Calculate thresholds for Cook’s distance.
2 Calculate the threshold for DFFITS.

Once we have found them (Figure 3.4), what do we do with outliers? There are a few strategies:

1. Remove them: If the outliers are due to data entry errors or other issues, it may be appro-
priate to remove them from the analysis. However, this should be done with caution, as
outliers may be functionally important in the dataset if they represent rare, extreme events.

2. Robust regression methods:When there is certainty that the outliers are part of the ob-
served response and represent extreme but rare occurrences, robust regression techniques
such as M-estimation or least trimmed squares, which are less sensitive to the presence of
outliers, could be used.

3. Transformation of variables: Applying appropriate transformations (e.g., logarithmic, square
root) to the variables can sometimes reduce the impact of outliers.

3.6.7 Interpret the Results
Now that we have tested the assumptions, we can interpret the results of the model fitted in
Section 3.6.4. The slope of the regression line is 0.003188 mm/g, with a standard error of ±
0.0003977. The p-value is less than 0.001, so we reject the null hypothesis that the slope is zero.
We conclude that there is a significant relationship between the body mass of the penguins and
their bill length.
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Figure 3.3: Diagnostic plots for visual inspection of outliers in the pernguin data. A) Difference in
Fits (DFFITS) for mod1. B) Cook’s distance. C) Residuals vs. leverage. D) Cook’s distance vs. Lev./(1-
Lev.). Outliers are identified beyond the Cook’s distance threshold (4/n) and are plotted in black
and their row numbers in dark red. The vertical dashed blue lines in C) and D) are positioned at 2
times the average leverage. The horizontal red dashed lines in B) and D) are located at the Cook’s
distance threshold. A) to C) are custom ggplot2 plots corresponding to plot(mod1, which =
c(4, 5, 6)).

The fit of the model is given by the multiple 𝑅2 value, which is 0.3013. This means that 30.13%
of the variation in bill length can be explained by body mass. The remaining ~70% is due to other
factors not included in the model. The intercept of the model is 26.99 mm, with a standard error of± 0.0003977. The intercept is the value of the dependent variable when the independent variable
is zero. In this case, it is the bill length of a penguin with a body mass of zero grams, which is not
a meaningful value.

The significance of the overall fit of the model can be assessed using an analysis of variance
(ANOVA) test. The p-value is less than 0.001, so we reject the null hypothesis that the model does
not explain a significant amount of the variation in the data against an F-value of 64.25 on 1 and
149 degrees of freedom. We conclude that the model is a good fit for the data.

3.6.8 Reporting
I provide example Methods, Results, and Discussion sections in a format more-or-less suited for
inclusion in a scientific manuscript. Feel free to use it as a template and edit it as necessary to
describe your study.
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Figure 3.4: Plot of the linear regression resulting from mod1 with the outliers identified using
Cook’s distance highlighted.

Methods

Study data

The data analysed in this study were derived from the Palmer Penguins dataset, a comprehensive
collection of measurements from three penguin species (Adelie, Chinstrap, and Gentoo) collected
in the Palmer Archipelago, Antarctica. The dataset includes variables species, island, bill length,
bill depth, flipper length, body mass, and sex of the penguins. This dataset has been made publicly
available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long
Term Ecological Research Network.

Statistical analysis

The primary objective of our statistical analysis was to investigate the relationship between the
penguins’ body mass and bill length. For this purpose, we employed a simple linear regression
model to quantify the extent to which the independent variable predicts bill length.

We fitted a simple linear regression model using the lm() function in R version 4.4.0 (R Core Team,
2024). The model included bill length as the dependent variable, and body mass as continuous
predictor. We ensured all assumptions for linear regression were assessed including linearity,
independence, homoscedasticity, and normality of residuals.

After fitting the model, diagnostic plots were generated using the plot() function in R to visually
assess the residuals for any patterns indicating potential violations of regression assumptions.
Additionally, the Shapiro-Wilk test was conducted to confirm the normality of the residuals. The
presence of heteroscedasticity was evaluated using the Breusch-Pagan test.

The adequacy of the model fit was judged based on the coefficient of determination (R2), which
provided insight into the variance in body mass explained by the predictors. The significance of
the regression coefficients was determined using t-tests, and the overall model fit was evaluated
by an F-test.

Results
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Figure 3.5: Plot of bill length as a function of bodymass forAdelie penguins sampled at the Palmer
Station. The straight line indicates the best fit regression line and the blue shading is the 95%
confidence interval.

The regression coefficient for bill length with respect to body mass was estimated to be approx-
imately 3.2 × 10−3 mm/g ± 3.977 × 10−4 (mean slope ± SE) (𝑝 < 0.001, 𝑡 = 8.015), indicating a
significant dependence of bill length on body mass (Figure 3.5).

The multiple 𝑅2 value of the model was 0.3013, suggesting that approximately 30.13% of the
variability in bill length can be accounted for by changes in bodymass. This indicates that while bill
length variation is notably influenced by body mass, about 69.87% of the variation is attributable
to other factors not included in the model.

The overall fit of the model, assessed by an ANOVA, strongly supported the model’s validity
(𝐹 = 64.25, 𝑝 < 0.001, d.f. = 1, 149) and confirms that a linear model provides adequate support
for predicting penguin bill length from body mass.

Discussion

In conclusion, the statistical analysis confirms a significant relationship between body mass and
bill length in penguins. Although the model explains a substantial portion of the variation, future
studies should consider additional variables that could account for the remaining variability in bill
length. This would enhance our understanding of the morphological adaptations of penguins in
their natural habitat.

3.7 Confidence and Prediction Intervals
Confidence intervals estimate the range within which the true mean of the dependent variable
(𝑌) is likely to fall for a given value of the independent variable (𝑋). In other words, if you were to
repeat your experiment many times and calculate the mean response at a specific 𝑋 value each
time, the confidence interval would contain the true population mean a certain percentage of the
time (e.g., 95%). Therefore, a 95% confidence interval means you can be 95% confident that the
interval contains the true mean response for the population at that particular 𝑋 value. It’s about
the average, not individual data points.

Prediction intervals, on the other hand, provide a range of 𝑌 values that are likely to contain a
single new observation of the dependent variable for a given value of the independent variable
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Figure 3.6: Plot of pernguin data with the confidence interval (blue) and prediction interval (pink)
around the fitted values.𝑋. These intervals account for the variability around individual observations and are generally
wider than confidence intervals because they include both the variability of the estimated mean
response and the variability of individual observations around that mean. Continuing with the
Adelie penguin data, the confidence and prediction intervals are shown in Figure 3.6.

# Predict values with confidence intervals
pred_conf <- as.data.frame(predict(mod1,

newdata = Adelie,
interval = "confidence"))

# Predict values with prediction intervals
pred_pred <- as.data.frame(predict(mod1,

newdata = Adelie,
interval = "prediction"))

# Add body mass to the data frame
results <- cbind(Adelie, pred_conf, pred_pred[,2:3])

# Rename columns for clarity
names(results)[c(9:13)] <- c("fit", "lwr_conf", "upr_conf",

"lwr_pred", "upr_pred")

ggplot(data = results, aes(x = body_mass_g, y = fit)) +
geom_line(linewidth = 0.4, colour = "red") +
geom_ribbon(aes(ymin = lwr_pred, ymax = upr_pred),

alpha = 0.2, fill = "red") +
geom_ribbon(aes(ymin = lwr_conf, ymax = upr_conf),

alpha = 0.2, fill = "blue") +
geom_point(aes(y = bill_length_mm), shape = 1) +
labs(x = "Body mass (g)", y = "Bill length (mm)") +
theme_bw()

Confidence and prediction intervals are relevant for understanding the uncertainty associated
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Figure 3.7: Scatter plot of the sparrow dataset with a best fit line.

with a linear regression model’s predictions. While confidence intervals focus on quantifying the
uncertainty around the estimated mean response, prediction intervals comprehensively assess the
variability that can be expected for individual observations. We can use both when interpreting
the results of a linear regression analysis.

Confidence intervals are useful when the primary interest lies in making inferences about the
mean response at specific values of the independent variable(s). For instance, in a study examining
the relationship between soil nutrient levels and plant biomass, confidence intervals can help
determine the range of mean biomass that can be expected for a given level of soil nutrients.
This information may be valuable for crop management practices, such as designing fertilisation
strategies or assessing the impact of nutrient depletion on plant productivity.

Prediction intervals, on the other hand, are more relevant when the goal is to predict the value of
an individual observation or to assess the range of values that future observations might take. For
example, in a study investigating the relationship between ambient temperature and the growth
rate of a species of fish, prediction intervals provide a range of growth rates that an individual fish
might exhibit based on the observed temperature. This information is invaluable in aquaculture, for
instance, where predicting individual growth patterns can inform decisions about optimal stocking
densities or feed management strategies.

The relative widths of confidence and prediction intervals can provide insights into the variability
in the data. If the prediction intervals are substantially wider than the confidence intervals, it may
indicate a high level of variability in individual observations around the mean response, which
could suggest the presence of influential factors or sources of variation that are not accounted
for by the current model, such as microhabitat differences or genetic variation within the studied
population.

3.8 What Do I DoWhen Some Assumptions Fail?

3.8.1 Failing Assumptions of Normality and Homoscedasticity
I will use the sparrow data from Zar (1999) to demonstrate what to do when the assumptions of
normality and homoscedasticity are violated. I will fit a linear model to the data and then check
the assumptions.
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Figure 3.7 is a scatter plot of the sparrow data with a best fit line. At first glance, the linear model
seems to almost perfectly describe the relationship of wing length on age. I will fit a linear model
to the data and then check the assumptions.

mod2 <- lm(wing ~ age, data = sparrows)
summary(mod2)

Call:
lm(formula = wing ~ age, data = sparrows)

Residuals:
Min 1Q Median 3Q Max

-0.30699 -0.21538 0.06553 0.16324 0.22507

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.71309 0.14790 4.821 0.000535 ***
age 0.27023 0.01349 20.027 5.27e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2184 on 11 degrees of freedom
Multiple R-squared: 0.9733, Adjusted R-squared: 0.9709
F-statistic: 401.1 on 1 and 11 DF, p-value: 5.267e-10

Check the assumption of normality of residuals using the Shapiro-Wilk test, a histogram, and a
residual Q-Q plot.

shapiro.test(residuals(mod2))

Shapiro-Wilk normality test

data: residuals(mod2)
W = 0.84542, p-value = 0.02487

The p-value for the Shapiro-Wilk test is < 0.05, indicating that the residuals are not normally
distributed. The histogram and Q-Q plot of the residuals also show that the residuals are not
normally distributed (Figure 3.8 and Figure 3.9). In the Residual Q-Q plot, the points deviate from
the straight line, indicating non-normality—note the S-shaped curvature to the data.

hist(residuals(mod2))

plot(mod2, which = 2)

It is enough to know that the normality assumption is not met – I cannot proceed with a simple
linear regression. However, let us for completeness also look at the homoscedasticity assumption.
I will use the Breusch-Pagan test to check for homoscedasticity, followed by a plot of residuals
against fitted values.
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Figure 3.8: A histogram of the residual of the linear regression, mod2.

bptest(mod2)

studentized Breusch-Pagan test

data: mod2
BP = 1.6349, df = 1, p-value = 0.201

The p-value for the Breusch-Pagan test is > 0.05, indicating that the residuals are homoscedastic.
The plot of residuals against fitted values shows gives a slightly different impression (Figure 3.10).

plot(mod2, which = 1)

The assumptions of normality and homoscedasticity are violated (it is sufficient that one or the
other fails, not both). As already noted, I cannot proceed with the linear model. I will need to
consider alternative models or transformations to address these issues.

When the assumptions of normality and homoscedasticity are violated, I have some options—these
broadly group into transforming the data and using a non-parametric test.

Transforming the data can sometimes help attain normality and homoscedasticity. Common trans-
formations include the logarithmic, square root, and inverse transformations. However, be cau-
tious when interpreting the results of transformed data, as the transformed coefficients may not
be directly interpretable.

Iwill show theTheil-Sen estimator (also known as Sen’s slope estimator) as a robust non-parametric
replacement for a simple linear model. It calculates the median of the slopes of all pairs of sample
points to determine the overall slope of the line.

library(mblm)

mod3 <- mblm(wing ~ age, data = sparrows)
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Figure 3.9: A Residual Q-Q plot of the linear regression, mod2.

summary(mod3)

Call:
mblm(formula = wing ~ age, dataframe = sparrows)

Residuals:
Min 1Q Median 3Q Max

-0.44524 -0.31190 -0.00714 0.06905 0.14048

Coefficients:
Estimate MAD V value Pr(>|V|)

(Intercept) 0.75000 0.18532 91 0.000244 ***
age 0.27619 0.00956 91 0.000244 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.244 on 11 degrees of freedom

The interpretation of the Theil-Sen estimator is similar to the simple linear regression. The Theil-
Sen estimator provides a robust estimate of the slope of the relationship between age and wing
length. The slope of the line is 0.28 (± 0.19 mean absolute deviation) (V value = 91, p < 0.001),
indicating that for each additional day of age, the wing length increases by 0.28 cm. The intercept
of the line is 0.75, indicating that the wing length is ~0.8 cm when the age is 0 days.

3.8.2 My Data Do Not Display a Linear Response
In simple linear regression, the dependent variable 𝑌 is expected to exhibit a straight-line relation-
ship with the independent variable 𝑋. However, several factors can cause deviations from a linear
pattern.

Statistical assumptions underlying linear regression can affect the appearance of a linear response.
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Figure 3.10: A plot of residuals against fitted values for the linear regression, mod2.

The normality assumption is important but primarily pertains to the residuals rather than the 𝑌
vs. 𝑋 plot. A scatterplot of 𝑌 vs. 𝑋 might deviate from a linear pattern due to the non-normality of
the residuals or heteroscedasticity, where the variability of the residuals changes with the level of𝑋. Addressing these issues and then reassessing the linearity of the relationship is a logical first
step. Refer to Section 3.8 for more details on how to proceed.

Outliers in the data can significantly impact the regression line, leading to misleading results
(Section 3.6.6). Measurement errors in the independent variable can also lead to biased and incon-
sistent estimations, which may require revisiting the data collection process to address systemic
problems. Variable bias, where excluding relevant variables distorts the observed relationship,
could also explain seemingly nonlinear responses. Considering multiple predictor variables in a
regression model (Chapter 5) might be more appropriate in such situations.

It’s important to note that simple linear regression might not be suitable for all scenarios. For
instance, the dependent variable 𝑌might inherently follow a different probability distribution, such
as a Poisson or a binomial distribution, rather than a normal distribution. This is particularly relevant
in count data or binary outcome scenarios. In such cases, other types of models like Poisson
regression or logistic regression, accommodated by generalised linear models (GLM; Chapter 6),
would be more appropriate.

Lastly, if the data do not exhibit a linear relationship even after addressing these issues, the re-
lationship between the variables may really be nonlinear. This can occur when the underlying
functional relationship between 𝑋 and 𝑌 is better described by exponential, logarithmic, or other
more complex mechanistic responses. In such cases, nonlinear regression (Chapter 7) or gener-
alised additive models (GAM; Chapter 9) might be necessary to describe the relationship between
the variables accurately.
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Chapter 5

Multiple Linear Regression

In Section 3.1 we have seen how to model the relationship between two variables using simple
linear regression (SLR). However, in ecosystems, the relationship between the response variable
and the explanatoryvariables ismore complex and inmanycases cannot be adequately captured by
a single driver (i.e. influential or predictor variable). In such cases, multiple linear regression (MLR)
can be used to model the relationship between the response variable and multiple explanatory
variables.

5.1 Multiple Linear Regression
Multiple linear regression helps us answer questions such as:

• How do various environmental factors influence the population size of a species? Factors
like average temperature, precipitation levels, and habitat area can be used to predict the
population size of a species in a given region. Which of these factors are most important in
determining the population size?

• What are the determinants of plant growth in different ecosystems? Variables such as soil
nutrient content, water availability, and light exposure can help predict the growth rate of
plants in various ecosystems. How do these factors interact to influence plant growth?

• How do genetic and environmental factors affect the spread of a disease in a population?
The incidence of a disease might depend on factors like genetic susceptibility, exposure
to pathogens, and environmental conditions (e.g., humidity and temperature). What is the
relative importance of these factors in determining the spread of the disease?

Multiple linear regression extends the simple linear regression model to include several indepen-
dent variables. The model is expressed as:𝑌𝑖 = 𝛼 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + … + 𝛽𝑘𝑋𝑖𝑘 + 𝜖𝑖 (5.1)

Where:

• 𝑌𝑖 is the response variable for the 𝑖-th observation,
• 𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑘 are the 𝑘 predictor variables for the 𝑖-th observation,
• 𝛼 is the intercept,

47
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• 𝛽1, 𝛽2, … , 𝛽𝑘 are the coefficients for the 𝑘 predictor variables, and
• 𝜖𝑖 is the error term for the 𝑖-th observation (the residuals).

When including a categorical variable in a multiple linear regression model, dummy (indicator)
variables are used to represent the different levels of the categorical variable. Let’s assume we
have a categorical variable 𝐶 with three levels: 𝐶1, 𝐶2, and 𝐶3. We can represent this categorical
variable using two dummy variables:

• 𝐷1: Equals 1 if 𝐶 = 𝐶2, 0 otherwise.
• 𝐷2: Equals 1 if 𝐶 = 𝐶3, 0 otherwise.𝐶1 is considered the reference category and does not get a dummy variable. This way, we avoid

multicollinearity (see Section 5.6.4). R’s lm() function will automatically convert the categorical
variables to dummy variables (sometimes called treatment coding). The first level of the alpha-
betically sorted categorical variable is taken as the reference level. See Section 5.5 for more
information about how to include categorical variables in a multiple linear regression model. At
the end of the chapter you’ll find alternative ways to assess categorical variables in a multiple
linear regression model (Section 5.9).

Assume we also have 𝑘 continuous predictors 𝑋1, 𝑋2, … , 𝑋𝑘. The multiple linear regression model
with these predictors and the categorical variable can be expressed as:𝑌𝑖 = 𝛼 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + … + 𝛽𝑘𝑋𝑖𝑘 + 𝛾1𝐷𝑖1 + 𝛾2𝐷𝑖2 + 𝜖𝑖 (5.2)

Where:

• 𝑌𝑖 is the dependent variable for observation 𝑖.
• 𝛼 is the intercept term.
• 𝛽1, 𝛽2, … , 𝛽𝑘 are the coefficients for the continuous independent variables 𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑘.
• 𝐷𝑖1 and 𝐷𝑖2 are the dummy variables for the categorical predictor 𝐶.
• 𝛾1 and 𝛾2 are the coefficients for the dummy variables, representing the effect of levels 𝐶2
and 𝐶3 relative to the reference level 𝐶1.

• 𝜖𝑖 is the error term for observation 𝑖.
5.2 Nature of the Data

You are referred to the discussion in simple linear regression (Section 3.1). The only added consider-
ation is that the data should be multivariate, i.e., it should contain more than one predictor variable.
The predictor variables are generally continuous, but there may also be categorical variables.

5.3 Assumptions

Basically, this is as already discussed in simple linear regression (Section 3.1)—in multiple linear
regression, the same assumptions apply to the response relative to each of the predictor variables.
In Section 5.6.7 I will assess the assumptions in an example dataset. An additional considera-
tion is that the predictors must not be highly correlated with each other (multicollinearity) (see
Section 5.6.4).
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5.4 Outliers
Again, this is as discussed in simple linear regression (Section 3.1). In multiple linear regression,
the same considerations apply to the response relative to each of the predictor variables.

5.5 R Function
The lm() function in R is used to fit a multiple linear regression model. The syntax is similar to
that of the lm() function used for simple linear regression, but with multiple predictor variables.
The function takes the basic form:

lm(formula, data)

For a multiple linear regression with only continuous predictor variables (as in Equation 5.1), the
formula is:

lm(response ~ predictor1 + predictor2 + ... + predictorN,
data = dataset)

Interaction effects are implemented by including the product of two variables in the formula. For
example, to include an interaction between predictor1 and predictor2, we can use:

lm(response ~ predictor1 * predictor2, data = dataset)

When we have both continuous and categorical predictor variables (Equation 5.2), the formula is:

lm(response ~ continuous_predictor1 + continuous_predictor2 + ...
+ continuous_predictorN + factor(categorical_predictor1) +
factor(categorical_predictor2) + ...

+ factor(categorical_predictorM),
data = dataset)

5.6 Example 1: The Seaweed Dataset
Load some data produced in the analysis by Smit et al. (2017). Please refer to the chapter Deep
Dive into Gradients on Tangled Bank for the data description.

This dataset is suitable for amultiple linear regression because it has continuous response variables
(𝛽sør, 𝛽sim, and 𝛽sne, the Sørenesen dissimilarity, the turnover component of 𝛽-diversity, and the
nestedness-resultant component of 𝛽-diversity, respectively), continuous predictor variables (the
mean climatological temperature forAugust, the mean climatological temperature for the year, the
temperature range for February andAugust, and the SD of February andAugust), and a categorical
variable (the bioregional classification of the samples).
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sw <- read.csv("data/spp_df2.csv")
rbind(head(sw, 3), tail(sw, 3))[,-1]

dist bio augMean febRange febSD augSD annMean
1 0.000 BMP 0.00000000 0.00000000 0.00000000 0.0000000 0.00000000
2 51.138 BMP 0.05741369 0.09884404 0.16295271 0.3132800 0.01501846
3 104.443 BMP 0.15043904 0.34887754 0.09934163 0.4188239 0.02602247
968 102.649 ECTZ 0.41496099 0.11330069 0.24304493 0.7538546 0.52278161
969 49.912 ECTZ 0.17194242 0.05756093 0.18196664 0.3604341 0.24445006
970 0.000 ECTZ 0.00000000 0.00000000 0.00000000 0.0000000 0.00000000

Y Y1 Y2
1 0.000000000 0.0000000 0.000000000
2 0.003610108 0.0000000 0.003610108
3 0.003610108 0.0000000 0.003610108
968 0.198728140 0.1948882 0.003839961
969 0.069337442 0.0443038 0.025033645
970 0.000000000 0.0000000 0.000000000

Wewill do amultiple linear regression analysis to understand the relationship between some of the
environmental variables and the seaweed species. Specifically, we will consider only the variables
augMean, febRange, febSD, augSD, and annMean as predictors of the species composition as
measured by 𝛽sør (Y in the data file).
The model, which we will call full_mod1 below, can be stated formally as Equation 5.3:𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5 + 𝜖 (5.3)

Where:

• 𝑌 is the response variable, the mean Sørensen dissimilarity,
• the predictors 𝑋1, 𝑋2, 𝑋3, 𝑋4, and 𝑋5 correspond to augMean, febRange, febSD, augSD,
and annMean, respectively, and

• 𝜖 is the error term.
But before we jump into multiple linear regression, let’s warm up by first fitting some simple linear
regressions.

5.6.1 Simple Linear Models
For interest sake, let’s fit simple linear models for each of the predictors against the response
variable. Let’s look at relationships between the continuous predictors and the response in the
East Coast Transition Zone (ECTZ), ignoring the other bioregions for now. We will first fit the
simple linear models and then create scatter plots of the response variable 𝛽sør against each of the
predictor variables. To these plots, we will add a best fit (regression) lines.

sw_ectz <- sw |> filter(bio == "ECTZ")

predictors <- c("augMean", "febRange", "febSD", "augSD", "annMean")

# Fit models using purrr::map and store in a list
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models <- map(predictors, ~ lm(as.formula(paste("Y ~", .x)),
data = sw_ectz))

names(models) <- predictors

model_summaries <- map(models, summary)
model_summaries

$augMean

Call:
lm(formula = as.formula(paste("Y ~", .x)), data = sw_ectz)

Residuals:
Min 1Q Median 3Q Max

-0.180961 -0.059317 -0.008346 0.045695 0.192444

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.060104 0.007359 8.168 1.01e-14 ***
augMean 0.346011 0.010899 31.748 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.07721 on 287 degrees of freedom
Multiple R-squared: 0.7784, Adjusted R-squared: 0.7776
F-statistic: 1008 on 1 and 287 DF, p-value: < 2.2e-16

$febRange

Call:
lm(formula = as.formula(paste("Y ~", .x)), data = sw_ectz)

Residuals:
Min 1Q Median 3Q Max

-0.21744 -0.08311 -0.01543 0.07536 0.25699

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.092722 0.009638 9.621 <2e-16 ***
febRange 0.181546 0.008897 20.405 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1048 on 287 degrees of freedom
Multiple R-squared: 0.592, Adjusted R-squared: 0.5905
F-statistic: 416.4 on 1 and 287 DF, p-value: < 2.2e-16
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$febSD

Call:
lm(formula = as.formula(paste("Y ~", .x)), data = sw_ectz)

Residuals:
Min 1Q Median 3Q Max

-0.24267 -0.10709 -0.02587 0.08888 0.39171

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.12018 0.01168 10.29 <2e-16 ***
febSD 0.17166 0.01245 13.79 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1272 on 287 degrees of freedom
Multiple R-squared: 0.3985, Adjusted R-squared: 0.3964
F-statistic: 190.1 on 1 and 287 DF, p-value: < 2.2e-16

$augSD

Call:
lm(formula = as.formula(paste("Y ~", .x)), data = sw_ectz)

Residuals:
Min 1Q Median 3Q Max

-0.307683 -0.111051 -0.003922 0.086322 0.308041

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.12781 0.01231 10.38 <2e-16 ***
augSD 0.08793 0.00720 12.21 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.133 on 287 degrees of freedom
Multiple R-squared: 0.3419, Adjusted R-squared: 0.3396
F-statistic: 149.1 on 1 and 287 DF, p-value: < 2.2e-16

$annMean

Call:
lm(formula = as.formula(paste("Y ~", .x)), data = sw_ectz)
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Residuals:
Min 1Q Median 3Q Max

-0.144251 -0.051607 -0.005023 0.045095 0.145173

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.053883 0.006309 8.541 7.94e-16 ***
annMean 0.332150 0.008667 38.325 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0663 on 287 degrees of freedom
Multiple R-squared: 0.8365, Adjusted R-squared: 0.836
F-statistic: 1469 on 1 and 287 DF, p-value: < 2.2e-16

The individual models show that, for each predictor, the estimate of the coefficients (for slope)
and the test for the overall hypothesis are both significant (𝑝 < 0.05 in all cases; refer to the model
output). All the predictor variables are therefore good predictors of the structure of seaweed
species composition along.

# Create individual plots for each predictor
plts1 <- map(predictors, function(predictor) {
ggplot(sw_ectz, aes_string(x = predictor, y = "Y")) +
geom_point(shape = 1, colour = "dodgerblue4") +
geom_smooth(method = "lm", col = "magenta", fill = "pink") +
labs(title = paste("Y vs", predictor),

x = predictor,
y = "Y") +

theme_bw()
})

# Name the list elements for easy reference
names(plts1) <- predictors

ggpubr::ggarrange(plotlist = plts1, ncol = 2,
nrow = 3, labels = "AUTO")

Figure 5.1 is a series of scatter plots showing the relationship between the response variable 𝛽sør
and each of the predictor variables. The blue line represents the linear regression fitted to the data.
We see that the relationship between the response variable and each of the predictors is positive
and linear. Each of the models are significant, as indicated by the 𝑝-values in the model summaries.
These simple models do not tell us how some predictors might act together to influence the
response variable.

To consider combined effects and interactions between predictor variables, we must explore
multiple linear regression models that include all the predictors. Multiple regression will give us a
more integrated understanding of how various environmental variables jointly influence species
composition along the coast. In doing so, we can control for confounding variables, improve model
fit, deal with multicollinearity, test for interaction effects, and enhance predictive power.
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Figure 5.1: Individual simple linear regressions fitted to the variables augMean, febRange, febSD,
augSD, and annMean as predictors of the seaweed species composition as measured by the
Sørensen dissimilarity, Y.

We will fit this multiple regression model next.

5.6.2 State the Hypotheses for a Multiple Linear Regression
As with all inferential statistics, we need to consider the hypotheses when performing multiple
linear regression.

The null hypothesis (𝐻0) states that there is no significant relationship between the Sørensen
diversity index and any of the the climatological variables entered into the model, implying that
the coefficients for all predictors are equal to zero. The alternative hypothesis (𝐻𝐴), on the other
hand, states that there is a significant relationship between the Sørensen diversity index and the
climatological variables, positing that at least one of the coefficients is not equal to zero.

The hypotheses can be divided into two kinds: those dealing with the main effects and the one
assessing the overall model stated in Equation 5.3.

Main effects hypotheses

The main effects hypotheses test, for each predictor, 𝑋𝑖, if the predictor has a significant effect on
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the response variable 𝑌.𝐻0: There is no linear relationship between the environmental variables (augMean, febRange,
febSD, augSD, and annMean) and the community composition as measured by 𝛽sør (in Y). Formally,
for each predictor variable 𝑋𝑖:
• 𝐻0 ∶ 𝛽𝑖 = 0 for 𝑖 = 1, 2, 3, 4, 5

Where 𝛽𝑖 are the coefficients of the predictors in the multiple linear regression model.𝐻𝐴: There is a linear relationship between the environmental variables (augMean, febRange,
febSD, augSD, and annMean) and the species composition as measured by 𝛽sør:
• 𝐻𝐴 ∶ 𝛽𝑖 ≠ 0 for 𝑖 = 1, 2, 3, 4, 5

Overall hypothesis

In addition to testing the individual predictors, 𝑋𝑖, we can also test a hypothesis about the overall
significance of the model (F-test), which examines whether the model as a whole explains a signifi-
cant amount of variance in the response variable 𝑌. A significant F-test would suggest that at least
one predictor (excluding the intercept) in the model is likely to be significantly related to the re-
sponse, but it requires further investigation of individual predictors and potential multicollinearity
to fully understand the relationships. For the overall model hypothesis:

Null Hypothesis (𝐻0):
• 𝐻0 ∶ 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 0

Alternative Hypothesis (𝐻𝐴):
• 𝐻𝐴 ∶ ∃ 𝛽𝑖 ≠ 0 for at least one 𝑖

5.6.3 Fit the Model
We fit two models:

• a full model that includes an intercept term and the five environmental variables, and
• a null model that includes only an intercept term.

The reason the null model is included is to compare the full model with a model that has no
predictors. This comparison will help us determine which of the predictors are useful in explaining
the response variable—we will see this in action in the forward model selection process later on
(Section 5.6.5).

# Select only the variables that will be used in model building
sw_sub1 <- sw_ectz[, c("Y", "augMean", "febRange",

"febSD", "augSD", "annMean")]

# Fit the full and null models
full_mod1 <- lm(Y ~ augMean + febRange + febSD +

augSD + annMean, data = sw_sub1)
null_mod1 <- lm(Y ~ 1, data = sw_sub1)

# Add fitted values from the full model to the dataframe
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sw_ectz$.fitted <- fitted(full_mod1)

5.6.4 Dealing With Multicollinearity
Some of the predictor variables may be correlated with each other and this can lead to multi-
collinearity. When predictor variables are highly correlated, the model may not be able to dis-
tinguish the individual effects of each predictor. Consequently, the model becomes less precise
and harder to interpret due to the coefficients’ inflated standard errors (Graham (2003)). One can
create a plot of pairwise correlations to visually inspect the correlation structure of the predictors.
I’ll not do this here, but you can try it on your own.

A formal way to detect multicollinearity is to calculate the variance inflation factor (VIF) for each
predictor variable. The VIF measures how much the variance of the estimated regression coeffi-
cients is increased due to multicollinearity. AVIF value greater than 5 or 10 indicates a problematic
amount of multicollinearity.

initial_formula <- as.formula("Y ~ .")

threshold <- 10 # Define a threshold for VIF values

# Extract the names of the predictor variables
predictors <- names(vif(full_mod1))

# Iteratively remove collinear variables
while (TRUE) {
# Calculate VIF values
vif_values <- vif(full_mod1)
print(vif_values) # Print VIF values for debugging
max_vif <- max(vif_values)

# Check if the maximum VIF is above the threshold
if (max_vif > threshold) {
# Find the variable with the highest VIF
high_vif_var <- names(which.max(vif_values))
cat("Removing variable:",

high_vif_var,
"with VIF:",
max_vif,
"\n")

# Update the formula to exclude the high VIF variable
updated_formula <- as.formula(paste("Y ~ . -", high_vif_var))

# Refit the model without the high VIF variable
full_mod1 <- lm(updated_formula, data = sw_sub1)

# Update the environment data frame to reflect the removal
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sw_sub1 <- sw_sub1[, !(names(sw_sub1) %in% high_vif_var)]
} else {
break

}
}

augMean febRange febSD augSD annMean
27.947767 10.806635 8.765732 2.497739 31.061900
Removing variable: annMean with VIF: 31.0619
augMean febRange febSD augSD

2.290171 10.648752 8.637679 1.616390
Removing variable: febRange with VIF: 10.64875
augMean febSD augSD

1.423601 1.674397 1.585055

5.6.5 Perform Forward Selection
It might be that not all of the variables included in the full model are necessary to explain the
response variable. We can use a stepwise regression to select the best combination (subset) of
predictors that best explains the response variable. To do this, we will use the stepAIC function
that lives in the MASS package.

stepAIC()works by startingwith the null model and then adding predictors one byone, selecting
the one that improves the model the most as seen in the reduction of the AIC values along the
way. This process continues until no more predictors can be added to improve the model (i.e. to
further reduce the AIC). Progress is tracked as the function runs.

# Perform forward selection
mod1 <- stepAIC(null_mod1,

scope = list(lower = null_mod1, upper = full_mod1),
direction = "forward")

Start: AIC=-1044.97
Y ~ 1

Df Sum of Sq RSS AIC
+ augMean 1 6.0084 1.7108 -1478.4
+ febSD 1 3.0759 4.6433 -1189.9
+ augSD 1 2.6394 5.0797 -1163.9
<none> 7.7192 -1045.0

Step: AIC=-1478.41
Y ~ augMean

Df Sum of Sq RSS AIC
+ febSD 1 0.36036 1.3504 -1544.8
+ augSD 1 0.31243 1.3984 -1534.7
<none> 1.7108 -1478.4
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Step: AIC=-1544.77
Y ~ augMean + febSD

Df Sum of Sq RSS AIC
+ augSD 1 0.10568 1.2448 -1566.3
<none> 1.3504 -1544.8

Step: AIC=-1566.32
Y ~ augMean + febSD + augSD

The model selection process shows that as we add more variables to the model, the AIC value
decreases. We can infer from this that the multiple regression model provides a better fit that
simple linear models that use the variables in isolation.

We also see that stepAIC() has not removed any variables from the full model. Probably one
reason for failing to remove any variables is that the VIF process has already accomplished this
by virtue of dealing with multicollinearity. This means that all the variables retained in mod1 are
important in explaining the response variable.

5.6.6 Added-Variable Plots (Partial Regression Plots)
Before looking at the output in more detail, I’ll introduce partial regression plots as a means to
examine the relationship between the response variable and each predictor variable. Although
they can be calculated by hand, the car package provides a convenient function, avPlots(), to
create these plots.

Added variable plots are also sometimes called ‘partial regression plots’ or ‘individual coefficient
plots.’ They are used to display the relationship between a response variable and an individual pre-
dictor variable while accounting for the effect of other predictor variables in a multiple regression
model (the marginal effect).

# Create partial regression plots
avPlots(mod1, col = "dodgerblue4", col.lines = "magenta")

What insights canwe draw from the added-variable plots?Although there are betterways to assess
the model fit, we can already make some observations about the linearity of the model or the
presence of outliers. The slope of the line in an added variable plot corresponds to the regression
coefficient for that predictor in the full multiple regression model. Seen in this way, it visually
indicates the magnitude and direction of each predictor’s effect. In Figure 5.2, the added-variable
plot for augMean shows a tighter clustering of points around the regression line and a strong
linear relationship (steep slope) with the response variable; the plots for febSD and augSD, on
the other hand, show a weaker response and more scatter about the regression line. Importantly,
this suggests that augMean has a stronger and more unique contribution to the multiple-variable
model than the other two variables.

There are also insights to be made about possible multicollinearity using added-variable plots.
These plots are not a definitive test for multicollinearity, but they can provide some clues. Notably,
if a predictor shows a strong relationship with the response variable in a simple correlation but
appears to have little relationship in the added-variable plot, it might indicate collinearity with
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Figure 5.2: Partial regression plots for mod1 with the selected variables augMean, febSD, and
augSD.

other predictors. This discrepancy suggests that the predictor’s effect on the response is being
masked by the presence of other correlated predictors.

5.6.7 Model Diagnostics
We are back in the territory of parametric statistics, so we need to check the assumptions of the
multiple linear regression model (similar to those of simple linear regression). We can do this by
making the various diagnostic plots. all of them consider various aspects of the residuals, which
are simply the differences between the observed and predicted values.

Diagnostic plots of final model

You have been introduced to diagnostic plots in the context of simple linear regression (Section 3.1).
They are also useful in multiple linear regression. Although plot.lm() can easily do this, here
I use autoplot() from the ggfortify package. When applied to the final model, mod1, the plot
will in its default setting show four diagnostic plots: residuals vs. fitted values, normal Q-Q plot,
scale-location plot, and residuals vs. leverage plot. Note, this is for the full model inclusive of the
combined contributions of all the predictors, so we will not see separate plots for each predictor
as we have seen in the added-variable plots or component plus residual plots.

# Generate diagnostic plots
autoplot(mod1, shape = 21, colour = "dodgerblue4",
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Figure 5.3: Diagnostic plots to assess the fit of the final multiple linear regression model, mod1.

smooth.colour = "magenta") +
theme_bw()

Residuals vs. Fitted Values: In this plot we can assess linearity and homoscedasticity of the resid-
uals. If the seaweed gods were with us, we’d expect the points to be randomly scattered about a
horizontal line situation at zero. This would indicate that the relationship between the predictors
selected by the forward selection process (augMean, febSD, and augSD) and the response vari-
able (Y) is linear, and the variance of the residuals is constant across the range of fitted values. In
this plot, there’s a very slight curvature which might suggest a potential issue with the linearity
assumption—it is minute and I’d suggest not worrying about it. The variance of the residuals seems
to decrease slightly at higher fitted values, indicating a mild case of heteroscedasticity.

Q-Q Plot (Quantile-Quantile Plot): This plot is used to check the normality of the residuals. The
points should fall approximately along a straight diagonal line if the residuals are normally dis-
tributed. Here we see that the points generally follow the line although some deviations may be
seen at the tails. These deviations are not that extreme and again I don’t think this is not a big
concern.

Scale-Location Plot: This plot should reveal potential issues with homoscedasticity. The square
root of the standardised residuals is used here to make it easier to spot patterns, so we would like
the points to be randomly scattered around the horizontal red line. Here, the line slopes slightly
downward and this indicates that the variance of the residuals might decrease as the fitted values
increase. We can also see evidence of this in a plot of the observed values vs. the predictors in
Figure 5.3.
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Residuals vs. Leverage: This diagnostic highlights influential points (outliers). Points with high
leverage (far from the mean of the predictors) can be expected to exert a strong influence on the
regression line, tilting it in some direction. Cook’s distance (indicated by the yellow line) helps
identify such outliers. In our seaweed data a few points could have a high leverage, but since they
don’t seem to cross the Cook’s distance thresholds, I doubt they are overly worrisome.

Considering that no glaring red flags were raised by the diagnostic plots, I doubt that they are
severe enough to invalidate the model. However, if you cannot stand these small issues, you
could i) consider transforming the predictor or response variables to address your concerns about
heteroscedasticity, ii) investigate the outliers (high leverage points) to confirm if they are valid
data points or errors, or iii) try robust regression methods that are less sensitive to outliers and
heteroscedasticity.

Component plus residual plots

Component plus residual plots offer another way to assess the fit of the model in multiple regres-
sion models. Unlike simple linear regression where we only had one predictor variable, here we
have several. So, we need to assure ourselves that there is a linear relationship between each
predictor variable and the response variable (we could already see this in the added-variable plots
in Section 5.6.6). We can make component plus residual plots using the crPlots() function in
the car package. It displays the relationship between the response variable and each predictor
variable. If the relationship is linear, the points should be randomly scattered about a best fit line
and the spline (in pink in Figure 5.4) should plot nearly on top of the linear regression line.

# Generate component plus residual plots
crPlots(mod1, col = "dodgerblue4", col.lines = "magenta")

5.6.8 Understanding the Model Fit
The above model selection process has led us to the mod1 model, which can be stated formally
as: 𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝜖 (5.4)

Where:

• 𝑌: The response variable, the mean Sørensen dissimilarity.
• 𝑋1, 𝑋2, and 𝑋3: The predictors corresponding to augMean, febSD, and augSD, respectively.
• 𝜖: The error term.

We have convinced ourselves that the model is a good fit for the data, and we can proceed
to examine the model’s output. The fitted model can be explored in two ways: by applying the
summary() function or by using the anova() function. The summary() function provides a
detailed output of the model, while the anova() function provides a table of deviance values
that can be used to compare models.

The model summary

# Summary of the selected model
summary(mod1)
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Figure 5.4: Component plus residual diagnostic plots to assess the fit of the final multiple linear
regression model, mod1.

Call:
lm(formula = Y ~ augMean + febSD + augSD, data = sw_sub1)

Residuals:
Min 1Q Median 3Q Max

-0.153994 -0.049229 -0.006086 0.045947 0.148579

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.028365 0.007020 4.040 6.87e-05 ***
augMean 0.283335 0.011131 25.455 < 2e-16 ***
febSD 0.049639 0.008370 5.930 8.73e-09 ***
augSD 0.022150 0.004503 4.919 1.47e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.06609 on 285 degrees of freedom
Multiple R-squared: 0.8387, Adjusted R-squared: 0.837
F-statistic: 494.1 on 3 and 285 DF, p-value: < 2.2e-16

The first part of the summary() function’s output is the Coefficients section. This iswhere the
main effects hypotheses are tested (this model does not have interactions—if there were, they’d
appear here, too). The important components of the coefficients part of the model summary are:
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• (Intercept): This row provides information about where the regression line intersects
the y-axis.

• Main Effects:
– augMean, febSD, and augSD: These rows give the model coefficients associated with
the slopes of the regression lines fit to those predictor variables. They indicate the rate
of change in the response variable for a one-unit change in the predictor variable.

– Estimate, Std. Error, t value, and Pr(>|t|): These columns contain the statis-
tics used to interpret the hypotheses about the main effects. In the Estimate column
are the coefficients for the y-intercept and the main effects’ slopes, and Std. Error
indicates the variability of the estimate. The t value is obtained by dividing the coef-
ficient by its standard error. The p-value tests the null hypothesis that the coefficient
is equal to zero and significance codes are provided as a quick visual reference (their
use is sometimes frowned upon by statistics purists). Using this information, we can
quickly see that, for example, augMean has a coefficient of 0.2833 ± 0.0111 and the
slope of the line is highly significant, i.e. there is a significant effect of Y due to the
temperature gradient set up by augMean.

INFO The intercept and slope coefficients

The interpretation of the coefficients is a bit more complicated in multiple linear regression
compared to what we are accustomed to in simple linear regression. Let us look at some
greater detail at the intercept and the slope coefficients:
Intercept (𝛼): ) The intercept is the expected value of the response variable, 𝑌, when all
predictor variables are zero. It is not always meaningful, but it can be useful in some cases.
Slope Coefficients (𝛽1, 𝛽2, … , 𝛽𝑘): Each slope coefficient, 𝛽𝑗, represents the expected change in
the response variable, 𝑌, for a one-unit increase in the predictor variable, 𝑋𝑗, holding all other
predictor variables constant. This partial effect interpretation implies that 𝛽𝑗 accounts for
the direct contribution of 𝑋𝑗 to 𝑌while removing the confounding effects of other predictors
in the model. Figure 5.2 provides a visual representation of this concept and isolates the
effect of each predictor variable on the response variable.
Therefore, in the context of our model (Equation 5.4) for this analysis, the partial interpreta-
tion is as follows:
• 𝛽1: Represents the change in 𝑌 for a one-unit increase in 𝑋1, holding 𝑋2 and 𝑋3 constant.
• 𝛽2: Represents the change in 𝑌 for a one-unit increase in 𝑋2, holding 𝑋1 and 𝑋3 constant.
• 𝛽3: Represents the change in 𝑌 for a one-unit increase in 𝑋3, holding 𝑋1 and 𝑋2 constant.

There are also several overall model fit statistics—it is here where you’ll find the information you
need to assess the hypothesis about the overall significance of the model. Residual standard
error indicates the average distance between observed and fitted values. Multiple R-
squared and Adjusted R-squared values tell us something about the model’s goodness of
fit. The latter adjusts for the number of predictors in the model, and is the one you must use
and report in multiple linear regressions. As you also know, higher numbers approaching 1 are
better, with 1 suggesting that the model perfectly captures all of the variability in the data. The
F-statistic and its associated p-value test the overall significance of the model and examines
whether all regression coefficients are simultaneously equal to zero. You can also use the brief
overview of the residuals, but I don’t find this particularly helpful—best examine the residuals in a
histogram.

The ANOVA tables
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anova(mod1)

Analysis of Variance Table

Response: Y
Df Sum Sq Mean Sq F value Pr(>F)

augMean 1 6.0084 6.0084 1375.660 < 2.2e-16 ***
febSD 1 0.3604 0.3604 82.507 < 2.2e-16 ***
augSD 1 0.1057 0.1057 24.196 1.473e-06 ***
Residuals 285 1.2448 0.0044
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This function provides a sequential analysis of variance (Type I ANOVA) table for the regression
model (see more about Type I ANOVA, below). As such, this function can also be used to compare
nested models. Used on a single model, it gives a more interpretable breakdown of the variability
in the response variable Y and assesses the contribution of each predictor variable in explaining
this variability.

The ANOVA table firstly shows the degrees of freedom (Df) for each predictor variable added
sequentially to the model, as well as the residuals. For each predictor, the degrees of freedom
is typically 1. For the residuals, however, it represents the total number of observations minus
the number of estimated parameters. The Sum of Squares (Sum Sq) indicates the variability in
Y attributable to each predictor, and the mean sum of squares (Mean Sq) is the sum of squares
divided by the degrees of freedom.

The F value is calculated as the ratio of the predictor’s mean square to the residual mean square
tests. It is used in testing the null hypothesis that the predictor has no effect on Y. Whether or not
we accept the alternative hypothesis (reject the null) is given by the p-value (Pr(>F)) that goes
with each F-statistic. You know how that works.

Because this is a sequential ANOVA, the amount of variance in Y explained by each predictor (or
group of predictors) is calculated by adding the predictors to the model in sequence (as specified in
themodel formula). For example, the Sum of Squares for augMean (6.0084) represents the amount
of variance explained by adding augMean to a model that doesn’t include any predictors yet. The
Sum of Squares for febSD 0.3604) represents the amount of variance explained by adding febSD
to a model that already includes augMean—this improvement indicates that febSD explains some
of the variance in Y that augMean doesn’t.

INFO Order in which predictors are assessed in multiple linear regression

The interpretation of sequential ANOVA (Type I) is inherently dependent on the order in
which predictors are entered. In mod1 the order is first augMean, then febSD, and last
comes augSD. This order might not be the most meaningful for interpreting the sequential
sums of squares and their significance in the ANOVA table. How, then, does one decide on
the order of predictors in the model?
• If you have a strong theoretical or causal basis for thinking that certain predictors
influence others, you can enter them in that order.

• If you have a hierarchy of predictors based on their importance or general vs. specific
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nature, you can enter them hierarchically.
• You can manually fit models with different predictor orders and compare the ANOVA
tables to see how the results change. This can be time-consuming but might offer
insights into the sensitivity of your conclusions to the order of entry.

• You can use automated model selection procedures, such as stepwise regression, to
determine the best order of predictors. This is a more objective approach but can be
criticised for being data-driven and not theory-driven.

• Use Type II or Type III ANOVAs, which are are not order-dependent and can be used
to assess the significance of predictors after accounting for all other predictors in the
model. However, they have their own limitations and assumptions that need to be
considered.

My advice would be to have sound theoretical reasons for the order of predictors in the
model.

Both ways of looking at the model fit of mod1—summary() and anova()—show that forward
selection retained the variables augMean, febSD, and augSD. These three predictors should be
used together to explain the response, Y.

Let’s make a plot of the full model with all the initial predictors and the selected model with the
predictors chosen by the forward selection process.

# Add fitted values from the selected model to the dataframe
sw_ectz$.fitted_selected <- fitted(mod1)

# Create the plot of observed vs fitted values for the selected model
ggplot(sw_ectz, aes(x = .fitted_selected, y = Y)) +
geom_point(shape = 1, colour = "black", alpha = 1.0) +
geom_point(aes(x = .fitted), colour = "red",

shape = 1, alpha = 0.4) +
geom_abline(intercept = 0, slope = 1,

color = "blue", linetype = "dashed") +
labs(x = "Fitted Values",

y = "Observed Values") +
theme_bw()

5.6.9 Reporting
A Results section should be written in a format sutable for inclusion in your report or publication.
Present the results in a clear and concise manner, with tables and figures used to help substantiate
your findings. The results should be interpreted in the context of the research question and the
study design. The limitations of the analysis should also be discussed, along with any potential
sources of bias or confounding. Here is an example.

Results

The model demonstrates a strong overall fit, as indicated by the high 𝑅2 value of 0.839 and an
adjusted 𝑅2 of 0.837, suggesting that approximately 83.7% of the variance in the mean Sørensen
dissimilarity is explained by the predictors augMean, febSD, and augSD. All predictors in the
model are statistically significant, with augMean showing the strongest effect (𝛽1 = 0.283, 𝑝 <
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Figure 5.5: Plot of observed vs. predicted value obtained from the final multiple linear regression
model (mod) with the selected variables augMean, febSD, and augSD as predictors (black points),
and the initial model with also annMean and febRange (red points).0.0001) (Figure 5.2). The predictors febSD and augSD also have significant positive relationships
with the response variable (𝛽2 = 0.050, 𝑝 = 0.0001; 𝛽3 = 0.022, 𝑝 = 0.0001). A sequential ANOVA
further confirms the significance of each predictorvariable in themodel,with all F-values indicating
that the inclusion of each predictor significantly improves the model fit (𝑝 < 0.0001 in all cases).
Our model therefore provides clear support for the mean temperatures in August, the standard
deviation of temperatures in February, and the standard deviation of temperatures in August
as strong predictors of the mean Sørensen dissimilarity, with each contributing uniquely to the
explanation of variability in the response variable.

5.7 Example 2: Interaction of Distance and Bioregion
Our seaweed dataset includes two additional variables that we have not yet considered. These are
the continuous variable dist which represents the geographic distance between the seaweed
samples taken along the coast of South Africa, and the categorical variable bio which is the
bioregional classification of the seaweed samples.

These two new variables lend themselves to a few interesting questions. For example:

1. Is the geographic distance between samples related to the Sørensens dissimilarity of the
seaweed flora?

2. Does the average Sørensens dissimilarity vary among the bioregions to which the samples
belong?

3. Is the effect of geographic distance on the Sørensens dissimilarity different for each biore-
gion?

The most complex model is (3), the one that answers the question about whether the effect of
dist on the response variable 𝑌 is different for each bioregion. Questions (1) and (2) are subsets
of this more inclusive question. To fully answer these quesitons, let’s first consider the full model,
which includes an interaction term between the continuous predictor dist and the categorical
predictor bio. When we finally test our model, we will also have to consider the simpler models
that do not include the interaction term.
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‘Interaction’ means that the effect of one predictor on the response variable is contingent on the
value of another predictor. For example, we might have reason to suspect that the relationship of
the Sørensens dissimilarity with the geographic distance between samples is different between
the west coast compared to, say, the east coast. This is indeed a plausible expectation, but we will
test this formally below.

The full multiple linear regression model with the interaction terms can be formally expressed as
Equation 5.5: 𝑌 = 𝛼 + 𝛽1dist + 𝛽2bioB-ATZ + 𝛽3bioBMP+ 𝛽4bioECTZ + 𝛽5(dist × bioB-ATZ)+ 𝛽6(dist × bioBMP) + 𝛽7(dist × bioECTZ) + 𝜖 (5.5)

Where:

• 𝑌: The response variable, the mean Sørensen dissimilarity.
• 𝛼: The intercept term.
• dist: The continuous predictor variable representing distance.
• bio: The categorical predictor variable representing bioregional classificationwith four levels:
AMP (reference category), B-ATZ, BMP, and ECTZ.

• bioB-ATZ,bioBMP,bioECTZ: Dummy variables for the bioregional classification, where:
– bioB-ATZ = 1 if bio = B-ATZ, and 0 otherwise,
– bioBMP = 1 if bio = BMP, and 0 otherwise, and
– bioECTZ = 1 if bio = ECTZ, and 0 otherwise.

• dist×bioB-ATZ,dist×bioBMP,dist×bioECTZ: Interaction terms between distance and the biore-
gional classification dummy variables.

• 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7: The coefficients to be estimated for the main effects and interactions.
• 𝜖: The error term.

If this seems tricky, it is because of the dummy variable coding used to represent interactions in
multiple linear regression. The bio variable is a categorical variable with four levels, so we need
to create three dummy variables to represent the bioregional classification. The dist variable is
then interacted with each of these dummy variables to create the interaction terms. The lm()
function in R takes care of this for us in a far less complicated model statement. I’ll explain the
details around the interpretation of dummy variable coding when we look at the output of the
model with the summary() function.

5.7.1 State the Hypotheses for a Multiple Linear Regression with Interaction
Terms

Equation 5.5 expands into the following series of hypotheses that concern the main effects, the
interactions between the main effects, and the overall hypothesis:

Main effects hypotheses

In the main effects hypotheses we are concerned with the effect of each predictor variable on the
response variable. For the main effect of distance we have the null:

• 𝐻0 ∶ 𝛽1 = 0
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vs. the alternative:

• 𝐻𝐴 ∶ 𝛽1 ≠ 0
For the main effect of bioregional classification, the nulls are:

• 𝐻0 ∶ 𝛽2 = 0 (bioB-ATZ)
• 𝐻0 ∶ 𝛽3 = 0 (bioBMP)
• 𝐻0 ∶ 𝛽4 = 0 (bioECTZ)

vs. the alternatives:

• 𝐻𝐴 ∶ 𝛽2 ≠ 0 (bioB-ATZ)
• 𝐻𝐴 ∶ 𝛽3 ≠ 0 (bioBMP)
• 𝐻𝐴 ∶ 𝛽4 ≠ 0 (bioECTZ)

Hypotheses about interactions

This is where the hypothesis tests whether the effect of distance on the response variable is
different for each bioregional classification. The null hypotheses are:

• 𝐻0 ∶ 𝛽5 = 0 (dist × bioB-ATZ)
• 𝐻0 ∶ 𝛽6 = 0 (dist × bioBMP)
• 𝐻0 ∶ 𝛽7 = 0 (dist × bioECTZ)

vs. the alternatives:

• 𝐻𝐴 ∶ 𝛽5 ≠ 0 (dist × bioB-ATZ)
• 𝐻𝐴 ∶ 𝛽6 ≠ 0 (dist × bioBMP)
• 𝐻𝐴 ∶ 𝛽7 ≠ 0 (dist × bioECTZ)

Overall hypothesis

The overall hypothesis states that all coefficients associated with the predictors (distance, biore-
gional categories, and their interactions) are equal to zero, therefore indicating no relationship
between these predictors and the response variable, the Sørensen index. The null hypothesis is:

• 𝐻0 ∶ 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 𝛽6 = 𝛽7 = 0
vs. the alternative:

• 𝐻𝐴 ∶ ∃ 𝛽𝑖 ≠ 0 for at least one 𝑖
5.7.2 Visualise the Main Effects
To facilitate the interpretation of the main effects hypotheses and make an argument for why
an interaction term might be necessary, I’ve visualised the main effects (Figure 5.6). I see this as
part of my exploratory data analysis ensemble of tests. We see that fitting a straight line to the
Y vs. distance relationship seems unsatisfactory as there is too much scatter around that single
line to adequately capture all the structure in the variability of the points. Colouring the points
by bioregion reveals the hidden structure. The model could benefit from including an additional
level of complexity: see how points in the same bioregion show less scatter compared to points
in different bioregions.

Now look at the boxplots of the Sørensen dissimilarity index for each bioregional classification. It
shows that the median values of the Sørensen dissimilarity index are different for each bioregion.
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Figure 5.6: Plot of main effects of A) distance along the coast and B) bioregional classification on
the Sørensen dissimilarity index.

Taken together, Figure 5.6 (A, B) provide a good indication that adding the bioregional classification
might be an important predictor of the Sørensen dissimilarity index as a function of distance
between pairs of sites along the coast.

Next, wewill move ahead and fit the model inclusive of the distance along the coast and bioregion
as per Equation (5.5).

5.7.3 Fit and Assess Nested Models
I have a suspicion that the full model (mod2; see below) with the interaction terms will be a better
fit than reduced models with only the effect due to distance (seen independently). How can we
have greater certainty that we should indeed favour a slightly more complex model (with two
predictors) over a simpler one with only (distance only)?

One way to do this is to use a nested model comparison. We will fit a reduced model (one slope
for all bioregions) and compare this model to the full model (slopes are allowed to vary among
bioregions).

# Fit the linear regression model with only distance
mod2a <- lm(Y ~ dist, data = sw)

# Fit the multiple linear regression model with interaction terms
mod2 <- lm(Y ~ dist * bio, data = sw)

This is a nestedmodelwhere mod2a is nestedwithin mod2. ‘Nested’ means that the reducedmodel
is a subset of the full model. Nested models can be used to test hypotheses about the significance
of the predictors in the full model—does adding more predictors to the model improve the fit?
Comparing a nested model with a full model can be done with a sequential ANOVA, which is what
the anova() function also does (in addition to its use in Section 5.6.8).

So, comparing mod2a to mod2with an F-test tests the significance of adding the bio and using it
together with dist. The interaction is built into mod2 but we are not yet testing the significance
of the interaction terms. We will do that later.
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anova(mod2a, mod2, test = "F")

Analysis of Variance Table

Model 1: Y ~ dist
Model 2: Y ~ dist * bio
Res.Df RSS Df Sum of Sq F Pr(>F)

1 968 7.7388
2 962 2.2507 6 5.4881 390.95 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The sequential ANOVA shows that there is significant merit to consider an interaction term in the
model. This model would then allow us to have a separate slope for the Sørensen index as function
of distance for each bioregion. The residual sum of squares (RSS) decreases from 7.7388 in Model
1 to 2.2507 in Model 2, which indicates that Model 2 explains a significantly larger proportion of
the variance in the response variable. The F-test for comparing the two models yields an F-value
of 390.95 with a highly significant p-value (< 0.0001). The improvement in model fit due to the
inclusion of the interaction term is therefore statistically significant.

The above analyses skirted around the questions stated in the beginning of Section 5.7. I’ve
provided statistical evidence that full model is a better fit than the reduced model (the sequential
F-test tested this), so we should use both dist and bio in the model. I have not looked explicitly
at the main effects of the predictors. However, we can easily address questions (1) and (2):

• Question 1: looking at the summary of mod2a tells us that the main effect of dist is a
significant (p < 0.0001) predictor of the Sørensen dissimilarity index.

• Question 2: the main effect of bio is also significant (p < 0.0001), which is what we’d see if
we fit the model mod2b <- lm(Y ~ bio, data = sw).

Question 3 warrants deeper investigation. Next, we will look at the interaction terms in the full
model mod2 to see if the effect of dist on Y is different for each level of bio.

5.7.4 Interpret the Full Model
The model summary

# Summary of the model
summary(mod2)

Call:
lm(formula = Y ~ dist * bio, data = sw)

Residuals:
Min 1Q Median 3Q Max

-0.112117 -0.030176 -0.004195 0.023698 0.233520

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.341e-03 4.177e-03 1.279 0.2013
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dist 3.530e-04 1.140e-05 30.958 < 2e-16 ***
bioB-ATZ -6.140e-03 1.659e-02 -0.370 0.7114
bioBMP 3.820e-02 6.659e-03 5.737 1.29e-08 ***
bioECTZ 1.629e-02 6.447e-03 2.527 0.0117 *
dist:bioB-ATZ 7.976e-04 1.875e-04 4.255 2.30e-05 ***
dist:bioBMP -1.285e-04 2.065e-05 -6.222 7.31e-10 ***
dist:bioECTZ 4.213e-04 1.801e-05 23.392 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.04837 on 962 degrees of freedom
Multiple R-squared: 0.8607, Adjusted R-squared: 0.8597
F-statistic: 849.2 on 7 and 962 DF, p-value: < 2.2e-16

In the output returned by summary(mod2), we need to pay special attention to the use of dummy
variable encoding for the categorical predictor. The Coefficients section is similar to that of
mod1 (see Section 5.6.8), but now it includes the categorical predictor bio* and the interaction
terms dist:bio* (* indicating the levels of the categorical variable). The bio variable has four
levels, BMP, B-ATZ, AMP, and ECTZ, and AMP is selected as reference level. This decision to selected
AMP as reference is entirely arbitrary, and alphabetical sorting offers a convenient approach to
selecting the reference. The coefficients for the other levels of bio are interpreted as the sum of
the response variable and the reference level.

The following are the key coefficients in the model summary:

• (Intercept): This is the estimated average value of Ywhen dist is zero and bio is the
reference category (AMP). Its p-value (> 0.05) suggests it’s not significantly different from
zero.

• Main Effects:
– dist: This represents the estimated change in Y for a one-unit increase in distwhen
the bioregion is the reference category, AMP. The highly significant p-value (< 0.0001)
indicates a strong effect of distance in the AMP.

– bioB-ATZ, bioBMP, bioECTZ: These are dummyvariables representing different biore-
gions. Their coefficients indicate the difference in the average value of Y between each
of these bioregions and the reference bioregion when dist is zero. Only bioBMP and
bioECTZ are significantly different from the reference bioregion, AMP.

• Interaction Effects:
– dist:bioB-ATZ, dist:bioBMP, dist:bioECTZ: These interaction terms cap-
ture how the effect of dist on Y varies across different bioregions. For instance,
dist:bioB-ATZ indicates the additional change in the effect of dist in the B-ATZ
bioregion compared to the reference bioregion, AMP. All interaction terms are highly
significant, suggesting the effect of distance is different across bioregions.

Given this explanation, we can now interpret the coefficients of, for example, the bioB-ATZ
main effect and dist:bioB-ATZ interaction. Since AMP is the reference bioregion, its effect is
absorbed into the intercept term. Therefore, the coefficient for bioB-ATZ directly reflects the
difference we are interested in. The coefficient for bioB-ATZ is -0.0061 ± 0.0166 lower than that
of the reference, but the associated p-value (> 0.05) indicates that the average value of Y in the
B-ATZ bioregion is not significantly different from the reference bioregion, AMP.

If we’d want to report the actual coefficient for B-ATZ, we’d calculate the sum of the coefficients
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for (Intercept) and bioB-ATZ. This would give us the estimated average value of Y in the
B-ATZ bioregion when dist is zero. The associated SE is calculated as the square root of the sum
of the squared SEs of the two coefficients. Therefore, the coefficient for B-ATZ is −8 × 10−4 ±
0.0171.

The coefficient of 8×10−4 for dist:bioB-ATZ indicates that the effect of distance on Y is 8×10−4
units greater in the B-ATZ bioregion compared to the AMP bioregion. The SE of 2 × 10−4 suggests
a high level of precision in this estimate, and the p-value (< 0.0001) indicates that this difference
is statistically significant.

As before, to calculate the actual coefficient for dist in the B-ATZ bioregion, we’d sum the
coefficients for dist and dist:bioB-ATZ. The associated SE of this sum is calculated as the
square root of the sum of the squared SEs of the two coefficients. Therefore, the coefficient for
dist in the B-ATZ bioregion is 0.0012 ± 2 × 10−4.
Concerning the overall hypothesis, the Adjusted R-squared value of 0.8597 indicates that
the model explains 85.97% of the variance in the response variable Y. The F-statistic and
associated p-value (< 0.0001) indicate that the model as a whole is highly significant, meaning
at least one of the predictors (including interactions) has a significant effect on Y.

The ANOVA table

# The ANOVA table
anova(mod2)

Analysis of Variance Table

Response: Y
Df Sum Sq Mean Sq F value Pr(>F)

dist 1 8.4199 8.4199 3598.79 < 2.2e-16 ***
bio 3 3.6232 1.2077 516.21 < 2.2e-16 ***
dist:bio 3 1.8648 0.6216 265.69 < 2.2e-16 ***
Residuals 962 2.2507 0.0023
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ANOVA table’s interpretation is intuitive and simple: the Pr(>F) column shows the p-value
for each predictor in the model. The dist predictor has a highly significant effect on Y (< 0.0001),
as do all the bioregions and their interactions with dist. This confirms the results we obtained
from the coefficients. We don’t need to overthink this result.

5.8 Example 3: The Final Model

I’ll now expand mod1 to include bio as a predictor alongside augMean, febSD, and augSD (mod1
was applied only to data pertaining to ECTZ, one of the four levels in bio).
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𝑌 = 𝛼 + 𝛽1augMean + 𝛽2febSD + 𝛽3augSD+ 𝛽4bioB-ATZ + 𝛽5bioBMP + 𝛽6bioECTZ+ 𝛽7(augMean × bioB-ATZ) + 𝛽8(augMean × bioBMP)+ 𝛽9(augMean × bioECTZ) + 𝛽10(febSD × bioB-ATZ)+ 𝛽11(febSD × bioBMP) + 𝛽12(febSD × bioECTZ)+ 𝛽13(augSD × bioB-ATZ) + 𝛽14(augSD × bioBMP)+ 𝛽15(augSD × bioECTZ) + 𝜖 (5.6)

Where:

• 𝑌: The response variable (mean Sørensen dissimilarity).
• 𝛼: The intercept term, representing the expected value of Ywhen all predictors are zero and
bio is at the reference level AMP).

• 𝛽1: The coefficient for the main effect of augMean.
• 𝛽2: The coefficient for the main effect of febSD.
• 𝛽3: The coefficient for the main effect of augSD.
• 𝛽4, 𝛽5, 𝛽6: The coefficients for the main effects of the categorical predictor bio (for levels
B-ATZ, BMP, and ECTZ respectively, with AMP as the reference category).

• 𝛽7, 𝛽8, 𝛽9: The coefficients for the interaction effects between augMean and bio (for levels
B-ATZ, BMP, and ECTZ respectively).

• 𝛽10, 𝛽11, 𝛽12: The coefficients for the interaction effects between febSD and bio (for levels
B-ATZ, BMP, and ECTZ respectively).

• 𝛽13, 𝛽14, 𝛽15: The coefficients for the interaction effects between augSD and bio (for levels
B-ATZ, BMP, and ECTZ respectively).

• 𝜖: The error term, representing the unexplained variability in the response variable.
In this multiple regression model, we aim to understand the complex and interacting relationships
between the response variables and the set of predictors. It allows us to investigate not only the
individual effects of the continuous predictors on Y, but also how these effects might vary across
the different bioregions.

Themodel therefore incorporates interaction terms between each continuous predictor (augMean,
febSD, and augSD) and the categorical variable bio. This allows us to assess whether the rela-
tionships between augMean, febSD, or augSD and Y change depending on the specific bioregion.
Essentially, we are testing whether the slopes of these relationships are different in different
bioregions.

Additionally, the model examines the main effects of the bioregions themselves on Y. This means
we’re testingwhether the averagevalue ofY differs significantly across bioregions, after accounting
for the influence of the continuous predictors.

This is how these different insights pertain to the model components:

• Main Effects: The coefficients for themain effects of augMean, febSD, and augSD represent
the effect of each predictor when bio is at its reference level.

• Coefficients for bio: The coefficients for bio (e.g., 𝛽4bioB-ATZ) represent the difference in
the intercept for the corresponding level of bio compared to the reference level.
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• Interaction Terms: The interaction terms allow the slopes of augMean, febSD, and augSD
to vary across the different levels of bio. For example, 𝛽7(augMean × bioB-ATZ) represents
how the effect of augMean on Y changes when bio is B-ATZ compared to AMP.

5.8.1 State the Hypotheses
Overall hypothesis

I’ll only state the overall hypothesis for this model as the expansion of the individual hypotheses
for each predictor and interactions (all the 𝛽-coefficients in Equation 5.6) is quite voluminous.
The null is that there is no relationship between the response variable Y and the predictors (in-
cluding their interactions):

• 𝐻0 ∶ 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 𝛽6 = 𝛽7 = 𝛽8 = 𝛽9 = 𝛽10 = 𝛽11 = 𝛽12 = 𝛽13 = 𝛽14 = 𝛽15 = 0
The alternative is that at least one predictor or interaction term has a significant relationship with
the response variable Y:

• 𝐻𝐴 ∶ At least one 𝛽𝑖 ≠ 0 for 𝑖 ∈ {1, 2, ..., 15}
5.8.2 Fit the Model
In Section 5.6 I included the ECTZ seaweed flora in my analysis, but here I expand it to the full
dataset. To assuremyself that there is not a high degree ofmulticollinearity between the predictors,
I have calculated the variance inflation factors (VIFs) for the full model (not shown). This allowed
me to retain the same three predictors used in mod1, i.e. augMean, febSD, and augSD. This is the
point of departure for mod3.

Now I fit the model with those three continuous predictors and their interactions with the cate-
gorical variable bio.

# Make a dataframe with only the relevant columns
sw_sub2 <- sw |>
dplyr::select(Y, augMean, febSD, augSD, bio)

# Fit the multiple linear regression model with interaction terms
full_mod3 <- lm(Y ~ (augMean + febSD + augSD) * bio, data = sw_sub2)
full_mod3a <- lm(Y ~ augMean + febSD + augSD, data = sw_sub2)
null_mod3 <- lm(Y ~ 1, data = sw_sub2)

Model full_mod3a is similar to full_mod3 but without the interaction terms. This will allow
me to compare the two models and assess the importance of the interactions.

# Compare the models
anova(full_mod3, full_mod3a)

Analysis of Variance Table

Model 1: Y ~ (augMean + febSD + augSD) * bio
Model 2: Y ~ augMean + febSD + augSD
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Res.Df RSS Df Sum of Sq F Pr(>F)
1 954 3.5603
2 966 5.6890 -12 -2.1288 47.535 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

AIC(full_mod3, full_mod3a)

df AIC
full_mod3 17 -2652.498
full_mod3a 5 -2221.852

The AIC value for full_mod3 is lower than that of full_mod3a, indicating that including the
interaction with bio is necessary. Likewise, the ANOVA test also shows that the full model (lower
residual sum of squares) is significantly better than the reduced model.

I therefore use full_mod3 going forward. This is a complex model so I have used the stepwise
selection function, stepAIC(), to identify the most important predictors and interactions (code
and output not shown). I hoped that this might have simplified the model somewhat, but the
simplification I had hoped for did not materialise.

5.8.3 Interpret the Model
The model summary

The model summary provides a detailed look at the individual predictors and their interactions in
the model.

# Summary of the model
summary(mod3) # full_mod3 renamed to mod3 during stepAIC()

Call:
lm(formula = Y ~ augMean + bio + augSD + febSD + augMean:bio +

bio:augSD + bio:febSD, data = sw_sub2)

Residuals:
Min 1Q Median 3Q Max

-0.15399 -0.03841 -0.01475 0.03464 0.24051

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0299094 0.0062756 4.766 2.17e-06 ***
augMean 0.3441099 0.0158575 21.700 < 2e-16 ***
bioB-ATZ -0.0459611 0.0242519 -1.895 0.058374 .
bioBMP 0.0160756 0.0100749 1.596 0.110906
bioECTZ -0.0015444 0.0090275 -0.171 0.864197
augSD -0.0059012 0.0034011 -1.735 0.083044 .
febSD -0.0006481 0.0027954 -0.232 0.816706
augMean:bioB-ATZ -0.0461775 0.0874044 -0.528 0.597400
augMean:bioBMP -0.2406297 0.0211404 -11.382 < 2e-16 ***
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augMean:bioECTZ -0.0607745 0.0189030 -3.215 0.001348 **
bioB-ATZ:augSD 0.0655983 0.0371033 1.768 0.077382 .
bioBMP:augSD 0.0410220 0.0114706 3.576 0.000366 ***
bioECTZ:augSD 0.0280513 0.0053752 5.219 2.21e-07 ***
bioB-ATZ:febSD 0.0409425 0.0818927 0.500 0.617223
bioBMP:febSD 0.0056433 0.0150126 0.376 0.707070
bioECTZ:febSD 0.0502867 0.0082266 6.113 1.43e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.06109 on 954 degrees of freedom
Multiple R-squared: 0.7797, Adjusted R-squared: 0.7762
F-statistic: 225.1 on 15 and 954 DF, p-value: < 2.2e-16

The first thing to notice is that the model function has been rewritten in the forward selection
process (but none of the variables were deemed insignificant and removed):

• Initial specification: Y ~ (augMean + febSD + augSD) * bio
• Specification afterstepAIC():Y ~ augMean + bio + augSD + febSD + augMean:bio
+ bio:augSD + bio:febSD

Functionally, these two are identical, but the order in which the terms are presented differs.
Although this has affected the order in which the coefficients are presented in the summary
output, the coefficients are the same. The coefficients are:

• (Intercept): This is the estimated average value of Ywhen all predictor variables are zero
and the observation is in the reference bioregion (AMP).

• Main Effects:
– augMean: For every one-unit increase in augMean, Y increases by 0.3441, on average,
assuming all other predictors are held constant. This effect is highly significant.

– augSD and febSD: The main effects of these variables are not statistically significant,
suggesting they might not have a direct impact on Y when averaged across all biore-
gions.

– bioB-ATZ, bioBMP, bioECTZ: These coefficients represent the average difference in
Y between each of these bioregions and the reference bioregion, when the continuous
predictors are held at zero.

• Interaction Effects:
– augMean interactions: The significant interactions of augMeanwith bioregion indicate
that the effect of augMean on Y varies across bioregions. Notably, the interaction with
bioBMP has a strong, significant negative effect, suggesting that the positive effect of
augMean is much weaker in this bioregion compared to the reference.

– augSD and febSD interactions: These interactions with bioregions are sometimes sig-
nificant, providing good support for the alternative hypothesis that the effects of augSD
and febSD on Y depend on the specific bioregion.

Since dummy coding returns differences with respect to reference levels, howwould we calculate
the actual coefficients for, say, augMean? Since there are significant interaction effects, we must
consider the main effect of augMean in conjunction with bioregion.

For bio = B-ATZ:

• 𝛽augMean + 𝛽augMean:bioB-ATZ = 0.3441099 + (−0.0461775) = 0.2979324
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For bio = BMP:

• 𝛽augMean + 𝛽augMean:bioBMP = 0.3441099 + (−0.2406297) = 0.1034802
For bio = ECTZ:𝛽augMean + 𝛽augMean:bioECTZ = 0.3441099 + (−0.0607745) = 0.2833354
The respective SEs for these coefficients can be calculated using the formula for the standard
error of the sum of two variables. For example:

• 𝑆𝐸augMean = √𝑆𝐸2
augMean + 𝑆𝐸2

augMean:bio

The ANOVA table

The ANOVA table assesses the overall significance of groups of predictors or the sequential
addition of predictors to the model.

anova(mod3)

Analysis of Variance Table

Response: Y
Df Sum Sq Mean Sq F value Pr(>F)

augMean 1 9.9900 9.9900 2676.902 < 2.2e-16 ***
bio 3 1.1901 0.3967 106.296 < 2.2e-16 ***
augSD 1 0.1393 0.1393 37.331 1.451e-09 ***
febSD 1 0.0053 0.0053 1.422 0.2334
augMean:bio 3 0.7910 0.2637 70.647 < 2.2e-16 ***
bio:augSD 3 0.3426 0.1142 30.602 < 2.2e-16 ***
bio:febSD 3 0.1401 0.0467 12.517 4.953e-08 ***
Residuals 954 3.5603 0.0037
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ANOVA table shows that the model is highly significant, with very low p-values throughout
(< 0.0001). This indicates that the model as a whole is a good fit for the data.

5.8.4 Reporting
Here is what the reporting of the findings could look like in the Results section in your favourite
journal.

Results

Amultiple linear regressionmodel examining the effects of theAugust climatological mean temper-
ature (augMean), the August and February climatological SD of temperature (augSD and febSD,
respectively), and the bioregion classification (bio) on the response variable, the Sørensen dissim-
ilarity (Y), including their interaction terms, revealed several significant findings (Table 5.1). This
model allows a separate regression slope for each predictor within the bioregions (Figure 5.7). The
model explains a substantial portion of the variance in Y (𝑅2 = 0.780, adjusted 𝑅2 = 0.776), and
the overall model fit is highly significant (𝐹(15, 954) = 225.1, 𝑝 < 0.0001).
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Table 5.1: Summary of the multiple linear regression model examining the effects of augMean,
augSD, febSD, and bio on Y.

Coefficient Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0299 0.0063 4.766 < 0.0001 ***
augMean 0.3441 0.0159 21.700 < 0.0001 ***
bioB-ATZ -0.0460 0.0243 -1.895 > 0.05
bioBMP 0.0161 0.0101 1.596 > 0.05
bioECTZ -0.0015 0.0090 -0.171 > 0.05
augSD -0.0059 0.0034 -1.735 > 0.05
febSD -0.0006 0.0028 -0.232 > 0.05
augMean:bioB-ATZ -0.0462 0.0874 -0.528 > 0.05
augMean:bioBMP -0.2406 0.0211 -11.382 < 0.0005 ***
augMean:bioECTZ -0.0608 0.0189 -3.215 < 0.005 **
bioB-ATZ:augSD 0.0656 0.0371 1.768 > 0.05
bioBMP:augSD 0.0410 0.0115 3.576 < 0.0005 ***
bioECTZ:augSD 0.0281 0.0054 5.219 < 0.0005 ***
bioB-ATZ:febSD 0.0409 0.0819 0.500 > 0.05
bioBMP:febSD 0.0056 0.0150 0.376 > 0.05
bioECTZ:febSD 0.0503 0.0082 6.113 < 0.0005 ***

The main effect of augMean was highly significant (Estimate = 0.3441, 𝑝 < 0.0001), indicating a
strong positive relationship with Y. The interaction term augMean:bioBMP (Estimate = -0.2406,𝑝 < 0.0001) and augMean:bioECTZ (Estimate = -0.0608, 𝑝 < 0.005) were also significant, sug-
gesting that the effect of augMean on Y varies significantly for BMP and ECTZ bioregions compared
to the reference category (AMP). The bioBMP (Estimate = 0.0161, 𝑝 > 0.05) and bioECTZ (Esti-
mate = -0.0015, 𝑝 > 0.05) terms were not significant, indicating no significant difference from
AMP.

For augSD, the main effect was not significant (Estimate = -0.0059, 𝑝 > 0.05). Significant interac-
tion terms for bioBMP:augSD (Estimate = 0.0410, 𝑝 < 0.001) and bioECTZ:augSD (Estimate =
0.0281, 𝑝 < 0.0001) indicate that the effect of augSD on Y varies by bioregion.
The main effect of febSD was not significant (Estimate = -0.0006, 𝑝 > 0.05), suggesting no
direct relationship with Y. However, the interaction term bioECTZ:febSD (Estimate = 0.0503,𝑝 = 0.0001) was significant, indicating that the effect of febSD on Y differs for the ECTZ bioregion.
The ANOVA further highlights the overall significance of each predictor. augMean had a highly
significant contribution to the model (𝐹 = 2676.902, 𝑝 < 0.0001), as did bio (𝐹 = 106.296, 𝑝 <0.0001), and their interactions (augMean:bio, 𝐹 = 70.647, 𝑝 < 0.0001; bio:augSD, 𝐹 = 30.602,𝑝 < 0.0001; bio:febSD, 𝐹 = 12.517, 𝑝 = 4.953 × 10−8). The main effect of augSD was also
significant (𝐹 = 37.331, 𝑝 = 1.451 × 10−9), while febSD did not significantly contribute to the
model on its own (𝐹 = 1.422, 𝑝 = 0.2334).
These findings suggest that the effects of augMean, augSD, and febSD on Y are influenced by the
bioregional classification, with significant variations in the relationships depending on the specific
bioregion.
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5.9 Alternative Categorical Variable Coding Schemes (Contrasts)
Throughout the book, we have used dummy variable coding the specify the categorical variables
in the multiple linear regression models. But, should dummy variable coding not be to your liking,
there are other coding schemes that can be used to represent the categorical variables. These
alternative coding schemes are known as contrasts. The choice of contrast coding can affect the
interpretation of the regression coefficients.

I’ll provide some synthetic data to illustrate a few different contrasts. The data consist of a contin-
uous variable x, a categorical variable cat_varwith four levels, and a response variable y that has
some relationship with x and cat_var. I’ll use dummy variable coding as the reference (haha!).

head(data)

y x cat_var
1 0.6667876 -0.56047565 B
2 1.3086873 -0.23017749 B
3 0.4496192 1.55870831 D
4 2.1326402 0.07050839 A
5 -2.8608771 0.12928774 D
6 0.1497346 1.71506499 D

Categorical variable coding (any scheme) only affects the interpretation of the categorical variable
main effects and their interactions, so I’ll not discuss the coefficient associatedwith the continuous
variable x (the slope) in the model throughout the explanations offered below.

DummyVariable Coding (Treatment Contrasts)

This is the most commonly used coding scheme, and lm()’s default. One level is the reference
category (A) and the other levels are compared against it. Contrast matrices can be assigned
and/or inspected using the contrasts() function. For the dummy coding, the reference level
A will remain 0 and the other levels will be independently coded as 1 in three columns. You’ll
now understand why, when we have four levels within a categorical variable, we only need three
dummy variables to represent them.

# Dummy coding (treatment coding) ... default
contrasts(data$cat_var)

B C D
A 0 0 0
B 1 0 0
C 0 1 0
D 0 0 1

When we have four levels in a categorical variable, there are three dummy variable columns in the
contrast matrix. The first row, consisting of all zeros (0, 0, 0), represents the reference level, which
in this case is A. The other rows represent the different levels of the categorical variable, with a
1 in the respective column indicating that level. For example, level A is represented by (0, 0, 0), B
by (1, 0, 0), C by (0, 1, 0), and D by (0, 0, 1). In the regression model, these contrasts are used to
estimate the differences between each level and the reference level. Specifically, the first contrast
column indicates that the coefficient for this column will represent the difference between the
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mean of the response variable for level B and the mean for the reference level A, holding all other
variables constant. Similarly, the second and third columns represent the differences between
levels C and A, and D and A, respectively. This coding allows for a straightforward interpretation of
how each level of the categorical variable affects the response variable relative to the reference
level.

model_dummy <- lm(y ~ x + cat_var, data = data)
summary(model_dummy)

Call:
lm(formula = y ~ x + cat_var, data = data)

Residuals:
Min 1Q Median 3Q Max

-1.6615 -0.6297 -0.1494 0.4978 2.9305

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.8176 0.1635 17.232 < 2e-16 ***
x 1.8274 0.1040 17.572 < 2e-16 ***
cat_varB -1.7201 0.2499 -6.883 6.24e-10 ***
cat_varC -3.9056 0.2678 -14.586 < 2e-16 ***
cat_varD -5.4880 0.2512 -21.850 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9246 on 95 degrees of freedom
Multiple R-squared: 0.887, Adjusted R-squared: 0.8822
F-statistic: 186.4 on 4 and 95 DF, p-value: < 2.2e-16

The model summary shows that the coefficients for cat_varB, cat_varC, and cat_varD rep-
resent the differences in the mean of the response variable y between the reference category A
and categories B, C, and D, respectively, while controlling for the effect of the continuous variable
x.

Interpretation:

• (Intercept) (2.8176): The intercept represents the estimated mean value of the response
(y) when x is zero and the categorical variable is at the reference level A. This is the baseline
from which other categories are compared.

• x (1.8274): For each one-unit increase in x, y is expected to increase by 1.8274 units, holding
the categorical variable constant. This effect is consistent across all levels of the categorical
variable because the model does not have an interaction effect present.

• cat_varB (-1.7201): On average, the value of y for level B is 1.7201 units lower than that
for the reference level A, when x is held constant. This corresponds to the (1, 0, 0) row in
the contrast matrix.

• cat_varC (-3.9056): Similarly, on average, the value of y for level C is 3.9056 units lower
than that for the reference level, when x is held constant. This corresponds to the (0, 1, 0)
row in the contrast matrix.

• cat_varD (-5.4880): Lastly, on average, the value of y for level D is 5.4880 units lower
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compared to the reference , when x is held constant. This is row (0, 0, 1) row in the contrast
matrix.

All these coefficients are highly significant (p < 0.0001), indicating strong evidence for differences
between each category and the reference category A.

Themodel explains a large proportion of the variance in y (Adjusted R-squared: 0.8822), suggesting
a good fit. The F-statistic (186.4) with a very low p-value (< 0.0001) indicates that the model as a
whole is statistically significant.

If you want to change the reference level, you can use the relevel() function. For example, to
change the reference level of cat_var variable to C_2, you can use:

# Set "C" as the reference level for cat_var
data$cat_var <- relevel(data$cat_var, ref = "C")
contrasts(data$cat_var)

A B D
C 0 0 0
A 1 0 0
B 0 1 0
D 0 0 1

This may be useful when you want to compare the other levels to a different reference level.

Effect Coding (Sum Contrasts)

This coding method compares the levels of a categorical variable to the overall mean of the
dependent variable. The coefficients represent the difference between each level and the grand
mean. Instead of using 0 and 1 as we did with dummy variable coding, effect coding uses -1, 0,
and 1 to represent the different levels of the categorical variable.

# Reset the reference level to "A"
data <- data.frame(y, x, cat_var)

# Effect coding
contrasts(data$cat_var) <- contr.sum(4)
contrasts(data$cat_var)

[,1] [,2] [,3]
A 1 0 0
B 0 1 0
C 0 0 1
D -1 -1 -1

In effect coding (sum contrasts), each level of the categorical variable is compared to the overall
mean rather than a specific reference category. This contrast matrix with four levels (A, B, C, D)
and three columns can be interpreted as follows:

• Level A (1, 0, 0): The first row indicates that level A is included in the first contrast (cat_var1),
which means the mean of level A is being compared to the overall mean. Since the other
columns are zero, level A does not contribute to the other contrasts.
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• Level B (0, 1, 0): The second row indicates that level B is included in the second contrast
(cat_var2). The mean of level B is being compared to the overall mean, and it does not
contribute to the other contrasts.

• Level C (0, 0, 1): The third row indicates that level C is included in the third contrast
(cat_var3). The mean of level C is being compared to the overall mean, and it does not
contribute to the other contrasts.

• Level D (-1, -1, -1): The fourth row is a balancing row, ensuring that the sum of the contrasts
for each level equals zero. This indicates that level D is being compared to the overall mean
indirectly by balancing the contributions of levels A, B, and C.

model_effect <- lm(y ~ x + cat_var, data = data)
summary(model_effect)

Call:
lm(formula = y ~ x + cat_var, data = data)

Residuals:
Min 1Q Median 3Q Max

-1.6615 -0.6297 -0.1494 0.4978 2.9305

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.03921 0.09452 0.415 0.679
x 1.82741 0.10400 17.572 < 2e-16 ***
cat_var1 2.77844 0.14968 18.563 < 2e-16 ***
cat_var2 1.05832 0.16329 6.481 4.04e-09 ***
cat_var3 -1.12720 0.17765 -6.345 7.53e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9246 on 95 degrees of freedom
Multiple R-squared: 0.887, Adjusted R-squared: 0.8822
F-statistic: 186.4 on 4 and 95 DF, p-value: < 2.2e-16

Interpretation:

• (Intercept) 0.03921: The intercept represents the grand mean of the response variable
(y). Since the intercept is not statistically significant (p > 0.05), it indicates that the overall
mean is not significantly different from zero when considering the average effect of all levels
of the categorical variable.

• x (1.82741): For each one-unit increase in (x), the response (y) increases by approximately
1.82741 units. This effect is highly significant (p < 0.0001).

• cat_var1 (2.77844): Level A has a mean (y) that is 2.77844 units higher than the grand
mean. This effect is highly significant (p < 0.0001).

• cat_var2 (1.05832): Level B has a mean (y) that is 1.05832 units higher than the grand
mean. This effect is also highly significant (p < 0.0001).

• cat_var3 (-1.12720): Level C has a mean (y) that is 1.12720 units lower than the grand
mean. This effect is highly significant (p < 0.0001).

All these coefficients are highly significant (p < 0.0001), indicating strong evidence for differences
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between each category and the overall mean of all levels.

Themodel explains a large proportion of the variance in y (Adjusted R-squared: 0.8822), suggesting
a good fit. The F-statistic (186.4) with a very low p-value (< 0.0001) indicates that the model as a
whole is statistically significant.

Helmert Coding

Helmert coding compares each level of a categorical variable to the mean of the subsequent levels.
It is useful for testing ordered differences.

# Helmert coding
contrasts(data$cat_var) <- contr.helmert(4)
contrasts(data$cat_var)

[,1] [,2] [,3]
A -1 -1 -1
B 1 -1 -1
C 0 2 -1
D 0 0 3

The contrast matrix for a categorical variable with four levels (A, B, C, D) and three columns can be
interpreted as follows:

• Level A (-1, -1, -1): Level A is compared to the mean of levels B, C, and D. The negative values
indicate that level A is being subtracted in these comparisons.

• Level B (1, -1, -1): Level B is compared to the mean of levels C and D. The positive value in
the first column indicates that level B is being added in this comparison.

• Level C (0, 2, -1): Level C is compared to the mean of level D. The positive value in the second
column indicates that level C is being added in this comparison, while the negative value in
the third column is part of the comparison for subsequent levels.

• Level D (0, 0, 3): Level D is compared on its own in the final contrast. The positive value in
the third column indicates that level D is being added in this comparison.

model_helmert <- lm(y ~ x + cat_var, data = data)
summary(model_helmert)

Call:
lm(formula = y ~ x + cat_var, data = data)

Residuals:
Min 1Q Median 3Q Max

-1.6615 -0.6297 -0.1494 0.4978 2.9305

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.03921 0.09452 0.415 0.679
x 1.82741 0.10400 17.572 < 2e-16 ***
cat_var1 -0.86006 0.12495 -6.883 6.24e-10 ***
cat_var2 -1.01519 0.08206 -12.371 < 2e-16 ***
cat_var3 -0.90319 0.05477 -16.491 < 2e-16 ***
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9246 on 95 degrees of freedom
Multiple R-squared: 0.887, Adjusted R-squared: 0.8822
F-statistic: 186.4 on 4 and 95 DF, p-value: < 2.2e-16

Interpretation:

• (Intercept) (0.03921): The grand mean of ywhen x is zero.
• x (1.82741): For each unit increase in x , y increases by 1.82741 units.
• cat_var1 (-0.86006): The mean of level A is 0.86006 units lower than the combined mean
of levels B, C, and D.

• cat_var2 (-1.01519): The mean of level B is 1.01519 units lower than the combined mean
of levels C and D.

• cat_var3 (-0.90319): The mean of level C is 0.90319 units lower than the mean of level D.

The interpretation of the overall model remains more-or-less similar to before:

All these coefficients are highly significant (p < 0.0001), indicating strong evidence for differences
between each level and the overall mean of all subsequent levels.

Themodel explains a large proportion of the variance in y (Adjusted R-squared: 0.8822), suggesting
a good fit. The F-statistic (186.4) with a very low p-value (< 0.0001) indicates that the model as a
whole is statistically significant.

5.10 Exercises

Exclamation Task G

Use the data loaded at the start of this chapter for this task.
In this task you will develop data analysis, undertake model building, and provide an in-
terpretation of the findings. Your goal is to explore the species composition and assembly
processes of the seaweed flora around the coast of South Africa. See Smit et al. (2017) for
more information about the data and the analysis.
a. Analysis: Please develop multiple linear regression models for the seaweed species
composition (𝛽sim and 𝛽sne, i.e. columns called Y1 and Y2, respectively) using the all the
predictors in this dataset. At the end, the final model(s) that best describe(s) the species
assembly processes operating along the South African coast should be presented. The
final model may/may not contain all the predictors in the dataset, and it is your goal
to justify the variable and model selection.
• Accomplishing a) will require that you work through the whole model-building
process as outlined in the chapter. This includes the following steps:
– Data exploration and visualisation (EDA)
– Model building (providing hypothesis statements, variable selection using
VIF and forward selection, comparisons of nested models, justifications for
model selection)

– Model diagnostics
– Explanation of summary() and anova() outputs
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– Producing the Results section
– [60%]

b. Interpretation: Once you have arrived at the best model, discuss your findings in the
light of the appropriate ecological hypotheses that explain the relationships between
the predictors and the seaweed species composition. Include insights drawn from the
analysis of 𝛽sør that I developed in this chapter, and also rely on the theory you have
developed for the lecture material the class presented in Task A2.
• Accomplishing b) is thus all about model interpretation and discussing the eco-
logical relevance of the results.

• [40%]
The format of this task is a Quarto file that will be converted to an HTML file. The HTML
file will contain the graphs, all calculations, and the text sections. The task should be written
up as a publication (i.e. use appropriate headings) using a journal style of your choice. Aside
from this, there are no limitations.
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Figure 5.7: Individual linear regression fit to the variables augMean, febSD, and augSD for each
bioregion as predictors of the seaweed species composition.


