TOPIC 4 ENVIRONMENTAL DISTANCE

50

Similarity/dissimilarity and distance

- Species:
 - sites sharing a similar species composition are ecologically similar
 - i.e. high <u>similarity</u> / low <u>dissimilarity;</u>
 - we will cover dissimilarities in Topic 5.
- Environmental variables:
 - sites sharing similar environmental conditions have a low environmental <u>distance</u> between them;
 - how similar sites to each other depends on...
 - measurable environmental differences that influence species composition,
 - it can be due to unmeasured influences, or
 - it can also simply be noise.
- It is the ecologist's role to figure out what influences the similarity/dissimilarity/distances between sites.

Distance matrices

- A **distance matrix** is produced from a data table (**species table** or **environment table**) by calculating one of several dissimilarity indices.
- Also called **association** or **resemblance** matrices.
- See vegdist () vegan for a list of dissimilarity indices.
- The result is a matrix of **pairwise differences** in community composition (as synthesised by the chosen index) or ecological distance between all sites.

Distance matrix for environmental data

- **Euclidian distance** is "the 'ordinary' straight-line distance between two points in Euclidean space" (i.e. in its simplest form a planar area, which you know of as a graph with x- and y-axes)
- So, in 2D and 3D, gives distance in **cartesian units** between points on a plane (x, y) or in a volume (x, y, z).
- Conforms to our physical concept of distance
 - e.g. short geographic distances between points on a map, and
 - (loses accuracy over large distances, as Earth's surface is not on a plane but on a sphere... correct by using great circle distances, e.g. use the Haversine formula).
- Calculated using the Pythagorean theorem
 - differences are squared, so single large differences become very important, and
 - this is not useful for species data.

Distance matrices

- The matrices are **square** and **symmetrical**, and they will have as many rows and columns as the number of sites present in the original species or environment table.
- The **diagonals are zero** (a site is the same as itself, so it has zero dissimilarity).
- The table can be read directly, and each cell represents the species or ecological difference between a pair of sites.
- All information of the species ID (and maybe also abundance) of a site is lost, as this info is condensed into one metric.

Two dimensions [edit]

In the Euclidean plane, if $\mathbf{p} = (p_1, p_2)$ and $\mathbf{q} = (q_1, q_2)$ then the distance is given by

$$d(\mathbf{p},\mathbf{q})=\sqrt{(q_1-p_1)^2+(q_2-p_2)^2}.$$

This is equivalent to the Pythagorean theorem.

Alternatively, it follows from (*2*) that if the polar coordinates of the point **p** are (r_1, θ_1) and those of **q** are (r_2, θ_2) , then the distance between the points is

$$\sqrt{r_1^2+r_2^2-2r_1r_2\cos(heta_1- heta_2)}.$$

Three dimensions [edit]

In three-dimensional Euclidean space, the distance is

$$d(\mathbf{p},\mathbf{q})=\sqrt{(p_1-q_1)^2+(p_2-q_2)^2+(p_3-q_3)^2}$$

n dimensions [edit]

In general, for an *n*-dimensional space, the distance is

$$d(\mathbf{p},\mathbf{q}) = \sqrt{(p_1-q_1)^2 + (p_2-q_2)^2 + \dots + (p_i-q_i)^2 + \dots + (p_n-q_n)^2}.$$

e.g. example with position (such as geographic) coordinates... use **vegan**'s **vegdist**() function

$$d(a, b) = \sqrt{(a_x - b_x)^2 + (a_y - b_y)^2}$$

e.g. example with 3D position coordinates (a.k.a. dimensions)...

7 5.385165 5.656854 5.916080 9.433981 7.874008 4.582576

$$d(a, b) = \sqrt{(a_x - b_x)^2 + (a_y - b_y)^2 + (a_z - b_z)^2}$$

e.g. example with environmental 'dimensions'...

Raw data

site 🗦	temperature 🗦	depth 🗘	light 🗦
а	4	1	3
b	5	5	5
с	6	6	4
d	1	4	9
е	2	3	8
f	8	3	1
g	9	1	5

Euclidian distances

R>	<pre>ex.xyz.euc</pre>						
R>	ex.xyz.euc						
	1	2	3	4	5	6	
2	4.582576						
3	5.477226	1.732051					
4	7.348469	5.744563	7.348469				
5	5.744563	4.690416	6.403124	1.732051			
6	4.898979	5.385165	4.690416	10.677078	9.219544		
7	5.385165	5.656854	5.916080	9.433981	7.874008	4.582576	

 $d(a, b) = \sqrt{(a_{\text{temp}} - b_{\text{temp}})^2 + (a_{\text{depth}} - b_{\text{depth}})^2 + (a_{\text{light}} - b_{\text{light}})^2}$

e.g. example with higher dimension environmental data...

Raw data

^	pH 🗦	O2 [‡]	temp 🍦	depth 🗦
a	7.1	6.5	12.1	1.1
b	7.5	5.5	12.3	1.3
c	7.6	5.7	11.9	1.5
d	7.0	5.4	11.8	1.6
e	7.1	6.3	12.0	1.8
f	7.2	6.3	12.1	1.9
g	6.9	6.1	12.2	2.2

Standarised data

(transformation)

>	ex.env.std	← decosta	nd(xy.env, r	method = "sta	ndardize")
>	ex.env.std				
	рН	02	temp	depth	
а	-0.3872983	1.2156767	0.2494233	-1.41749621	
b	1.1618950	-1.0842522	1.4133987	-0.88114629	
С	1.5491933	-0.6242664	-0.9145521	-0.34479637	
d	-0.7745967	-1.3142450	-1.4965398	-0.07662142	
е	-0.3872983	0.7556909	-0.3325644	0.45972850	
f	0.0000000	0.7556909	0.2494233	0.72790346	
g	-1.1618950	0.2957051	0.8314110	1.53242833	

Euclidian distances

>	ex	.env.eu	uc ← veg	ex.env dist(xy.d a	.sta at, method	d = "eucl:	idian")
>	ex	.env.eu	uc				
		a	b	С	d	е	f
b	4.	123106					
С	6.	324555	2.236068				
d	4.	242641	4.123106	5.830952			
е	2.	828427	3.605551	5.656854	1.414214		
f	4.	472136	3.605551	4.472136	7.071068	6.000000	
g	5.	000000	5.656854	6.708204	8.544004	7.280110	2.236068