TOPIC 8 UNCONSTRAINED ORDINATION: PRINCIPAL COMPONENT ANALYSIS

- see <u>https://sites.google.com/site/mb3gustame/indirect-gradient-analysis/pca</u> and <u>https://www.davidzeleny.net/anadat-r/doku.php/en:pca</u>
- in ecology, PCA is done by the eigen-decomposition of an distance matrix or association matrix
- this yields a scaling and rigid rotation of axes in that the positions of points relative to one another (Euclidean distances) are maintained during rotation
- the scaled and rotated axes are referred to as principle components (the PC axes)
- the higher the degree of correlation between env. variables (or associations between species) is, the more strongly 'focused' the data cloud is, and therefore the more 'successful' the PCA is in terms of being able to represent many variables by only a few new variables (i.e. a few PC axes)
- since the association matrix is a correlation matrix, the sum of the eigenvalues along the diagonal equals the number of 'species' (here env. vars.)
- it maximises the 'variance explained'

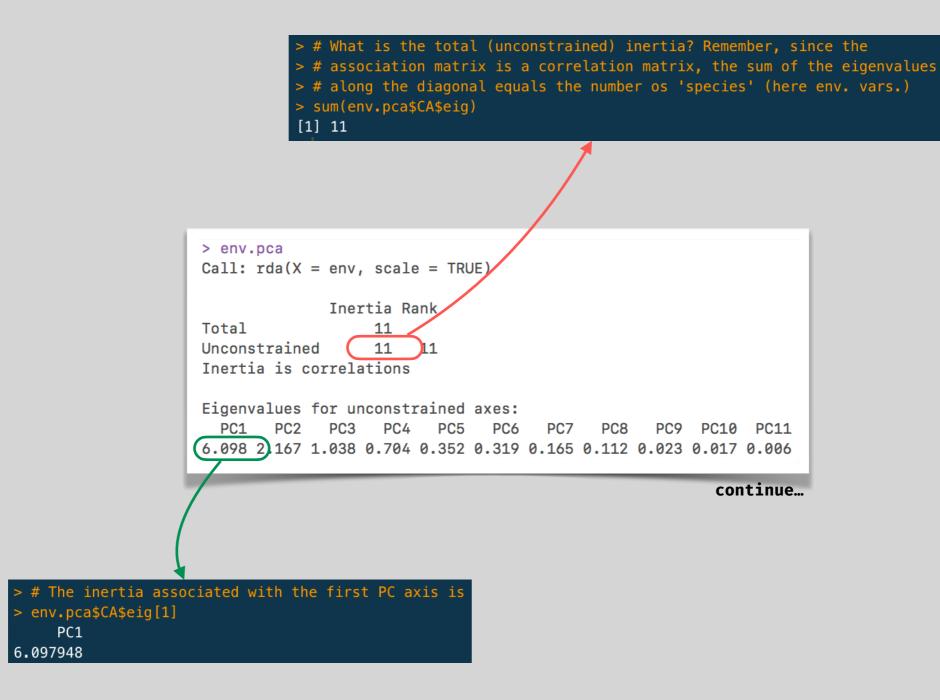
https://youtu.be/_UVHneBUBWo https://youtu.be/FgakZw6K1QQ

# F	dfs	le: 29 alt	x 11 slo	flo	ъЦ	har	pho	ni+	200	oxv	bod
				<dbl></dbl>	-		-			-	
1	0.3	934	48	0.84	7.9		0.01		0	12.2	2.7
2	2.2	932	3	1	8	40	0.02	0.2	0.1	10.3	1.9
3	10.2	914	3.7	1.8	8.3	52	0.05	0.22	0.05	10.5	3.5
4	18.5	854	3.2	2.53	8	72	0.1	0.21	0	11	1.3
5	21.5	849	2.3	2.64	8.1	84	0.38	0.52	0.2	8	6.2
6	32.4	846	3.2	2.86	7.9	60	0.2	0.15	0	10.2	5.3
7	36.8	841	6.6	4	8.1	88	0.07	0.15	0	11.1	2.2
8	70.5	752	1.2	4.8	8	90	0.3	0.82	0.12	7.2	5.2
9	99	617	9.9	10	7.7	82	0.06	0.75	0.01	10	4.3
10	123.	483	4.1	19.9	8.1	96	0.3	1.6	0	11.5	2.7
# .	wit	th 19 m	nore ro	ows							

> env

PCA based on a correlation matrix

Argument scale = TRUE calls for a standardization of the variables and it


creates a correlation matrix; this is necessary because the variables each

have a different measurement scale

env.pca <- rda(env, scale = TRUE)</pre>

...intermediate correlation matrix produced by `scale = TRUE`...

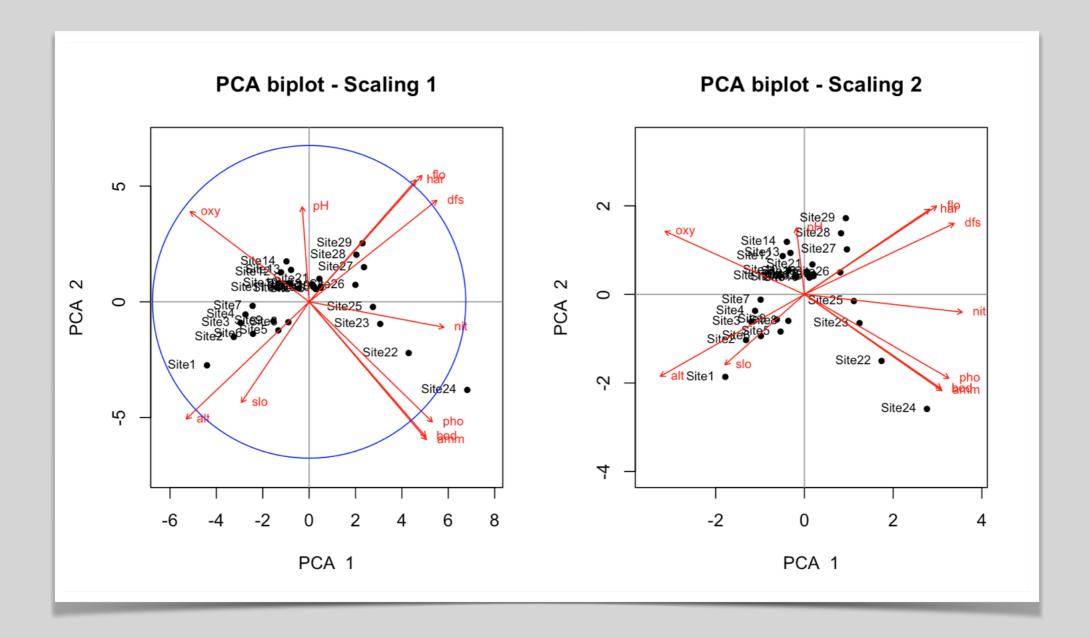
> cor(env)										
dfs	alt	slo	flo	pН	har	pho	nit	amm	оху	bod
dfs 1.00000000	-0.93837894	-0.3947527	0.94742121	0.01604625	0.73277932	0.4729141	0.73809569	0.4076923	-0.5700685	0.4346159
alt -0.93837894	1.00000000	0.4571298	-0.86289080	-0.05035674	-0.78551547	-0.4371091	-0.75260515	-0.3811344	0.4248230	-0.3825222
slo -0.39475266	0.45712978	1.0000000	-0.35761430	-0.22222041	-0.52669175	-0.1953638	-0.31433990	-0.1746442	0.3076363	-0.1738556
flo 0.94742121	-0.86289080	-0.3576143	1.00000000	0.03312637	0.73662526	0.3786878	0.59315083	0.2925252	-0.4210945	0.2951891
pH 0.01604625	-0.05035674	-0.2222204	0.03312637	1.00000000	0.08451511	-0.0794025	-0.04046292	-0.1220018	0.1923980	-0.1617056
har 0.73277932	-0.78551547	-0.5266918	0.73662526	0.08451511	1.00000000	0.3731861	0.53495392	0.2961360	-0.3736374	0.3369747
pho 0.47291414	-0.43710911	-0.1953638	0.37868776	-0.07940250	0.37318607	1.0000000	0.80093149	0.9699345	-0.7575015	0.9091698
nit 0.73809569	-0.75260515	-0.3143399	0.59315083	-0.04046292	0.53495392	0.8009315	1.00000000	0.8022323	-0.6867146	0.6832300
amm 0.40769227	-0.38113442	-0.1746442	0.29252515	-0.12200180	0.29613600	0.9699345	0.80223230	1.0000000	-0.7462700	0.9028247
oxy -0.57006855	0.42482297	0.3076363	-0.42109447	0.19239804	-0.37363740	-0.7575015	-0.68671462	-0.7462700	1.0000000	-0.8398165
bod 0.43461586	-0.38252216	-0.1738556	0.29518914	-0.16170564	0.33697473	0.9091698	0.68322998	0.9028247	-0.8398165	1.0000000

<pre>> cummermu(conv rec) # Defeuilt cooling 0</pre>	
> summary(env.pca) # Default scaling 2	
Call:	
rda(X = env, scale = TRUE)	
Partitioning of correlations:	
Inertia Proportion	
Total 11 1	
Unconstrained 11 1	
Figenvelues and their contribution to the correlations	
Eigenvalues, and their contribution to the correlations	
Importance of components:	
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11	
Eigenvalue 6.0979 2.1672 1.03761 0.70353 0.35174 0.31912 0.16453 0.11173 0.023134 0.01737 0.0060521	
Proportion Explained 0.5544 0.1970 0.09433 0.06396 0.03198 0.02901 0.01496 0.01016 0.002103 0.00158 0.0005502	
Cumulative Proportion 0.5544 0.7514 0.84571 0.90967 0.94164 0.97065 0.98561 0.99577 0.997870 0.99945 1.0000000	
Scaling 2 for species and site scores	
* Species are scaled proportional to eigenvalues	
* Sites are unscaled: weighted dispersion equal on all dimensions	
* General scaling constant of scores: 4.189264	
continue eigenvalues are the amount of variation (inertia) explained by the new variable	es (PC axes)
<i>i.e.</i> (6.0979/11)=0.5544 if using a correlation matrix (the default)!	,0 (1 0 axco),
 percentage and cumulative percentage 	
 the first principal component explains 55.44% of the variation 	
 the second adds an additional 19.70% 	
 the total amount of explanation offered by PC1 + PC2 is 75.14% 	
 all of the axes (here 11) account for 100% of the variation 	

- species scores: the loadings (a.k.a. scores or scaled eigenvectors) indicate the 'strength of contribution' of the original variables to the new variables, the Principal Components (PC1, PC2, etc.)
- they indicate how much each of the original variables contribute to PC1, PC2, etc.
- larger (more +ve) and smaller (more -ve) values indicate a greater contribution (albeit in opposite directions)
 - here, PC1 is made up of uneven contributions from most of the original variables
 - largest value is nitrate (1.1432) and smallest is oxygen (-1.0089)... these contribute most towards the differences between sites... places with the most nitrate will have the least dissolved oxygen (which makes ecological sense too)
 - pH and slope are least important
- given the strength of this principal component (it explains 55.44% of the inertia), one might hypothesise that its constituent variables influence many aspects of the community, but the vars oxygen and nitrate are most influential

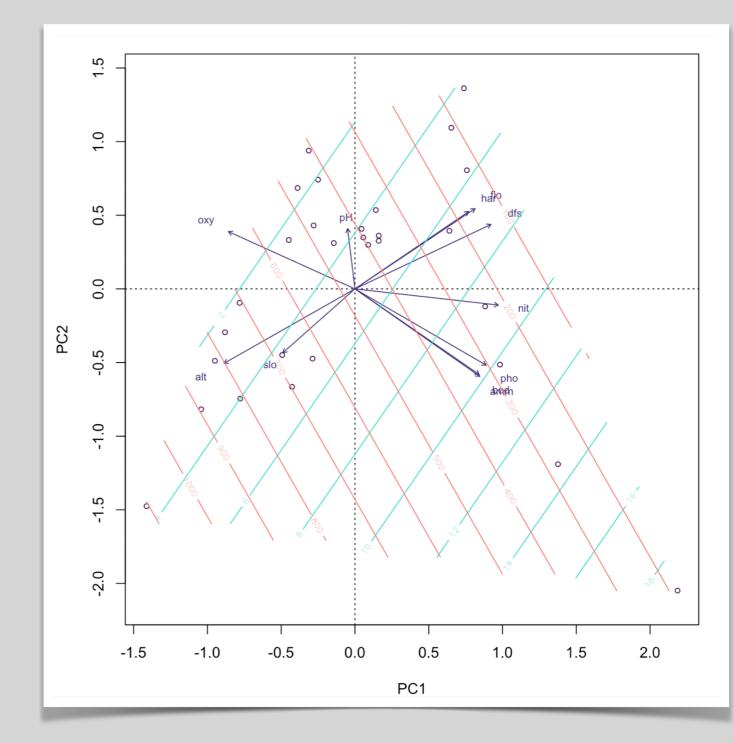
Species scores										
	PC1	PC2	PC3	PC4	PC5	PC				
dfs	1.0842	0.5150	-0.25749	-0.16168	0.21132	-0.0948				
alt	-1.0437	-0.5945	0.17984	0.12282	0.12464	0.1402				
slo	-0.5752	-0.5103	-0.55499	-0.80204	0.02764	0.2007				
flo	0.9577	0.6412	-0.30654	-0.19427	0.18401	0.0306				
рН	-0.0586	0.4820	1.03444	-0.51378	0.14421	0.0582				
har	0.9072	0.6181	-0.02280	0.15767	-0.27865	0.5073				
pho	1.0460	-0.6093	0.18734	-0.11866	-0.15113	0.0488				
nit	1.1432	-0.1290	0.01203	-0.18471	-0.21270	-0.3490				
amm	0.9954	-0.6989	0.18597	-0.08277	-0.19234	-0.0497				
оху	-1.0089	0.4578	-0.00918	-0.23450	-0.50552	-0.0576				
bod	0.9899	-0.6836	0.11962	0.03646	0.08542	0.2199				

...continue


continue..

...continue

Site scores (weighted sums of species scores)									
	PC1	PC2	PC3	PC4	PC5	PC6			
sit1	-1.41243	-1.47560	-1.74593	-2.95533	0.23051	0.49227			
sit2	-1.04173	-0.81761	0.34075	0.54364	0.92835	-1.76876			
sit3	-0.94881	-0.48823	1.36059	-0.21768	1.05289	-0.69640			
sit4	-0.88070	-0.29459	0.21014	0.66428	-0.23934	-0.06427			
sit5	-0.42588	-0.66503	0.77631	0.78777	0.62942	1.17850			
sit6	-0.77730	-0.74514	-0.06764	0.90839	0.46945	-0.32923			
sit7	-0.78155	-0.09448	0.39335	0.23079	-0.45431	1.17306			
sit8	-0.28732	-0.47352	0.29471	1.13215	0.69812	1.05344			
sit9	-0.49324	-0.44884	-1.31854	0.78932	-0.38574	0.41597			
sit10	-0.28009	0.43091	0.12225	-0.11790	-1.07206	0.45807			
sit11	-0.44849	0.33200	-0.53096	0.60345	-0.96682	0.11691			
sit12	-0.38850	0.68558	0.10462	0.08107	-1.10978	0.84504			
sit13	-0.24996	0.74160	0.88642	-0.46709	-0.96946	0.74682			
sit14	-0.31329	0.93929	1.93010	-1.27078	0.06283	0.14773			
sit15	-0.14329	0.31112	-0.21270	0.24363	-0.61744	-0.52902			
s1t16	0.08956		-0.18601		-0.73164				
sit17	0.05649	0.34914	-0.22049	0.14198	-0.76039	-0.60408			
sit18	0.04513	0.40790	0.12272	-0.20091	-0.49665	-0.87755			
sit19	0.16126			-0.05345		-1.36200			
sit20	0.16079		-0.74873	0.40912		-0.90766			
sit21	0.14178			-0.07021		-0.24654			
sit22	1.37614			-0.35075					
sit23	0.98260	-0.51434		0.40978	1.01197	0.84836			
sit24	2.18633	-2.04860		-0.29583	-1.26009				
sit25	0.88257		-0.64734	0.34001		-0.14280			
sit26	0.63983		-0.15997			-0.66497			
sit27	0.75833	0.80559		-0.96863		-0.74305			
sit28	0.65324		-1.68227	0.37796	0.43707	0.65309			
sit29	0.73849	1.36252	-0.27161	-0.62819	1.42387	0.88211			


• site scores: the (scaled) coordinates of the objects (sites)

Plots using biplot.rda (top row) # dev.new(width = 12, height = 6, title = "PCA biplots - environmental variables - biplot.rda") # Plots using cleanplot.pca - NEW VERSION OF THIS FUNCTION which changed syntax (bottom row) # A rectangular graphic window is needed for the two plots # dev.new(width = 12, height = 6, title = "PCA biplots - environmental variables - cleanplot.pca") par(mfrow = c(2, 2)) biplot(env.pca, scaling = 2, choices = c(1, 2), main = "PCA - scaling 1") biplot(env.pca, choices = c(1, 2), main = "PCA - scaling 2") # Default scaling 2 cleanplot.pca(env.pca, scaling = 1, mar.percent = 0.08) cleanplot.pca(env.pca, scaling = 2, mar.percent = 0.04)

par(mfrow = c(1, 1))
palette(viridis(8))
biplot(env.pca, type = c("text","points"))
tmp ← ordisurf(env.pca ~ bod, env, add = TRUE, col = "turquoise", knots = 1)
tmp ← ordisurf(env.pca ~ alt, env, add = TRUE, col = "salmon", knots = 1)

- the contours form a linear trend surface, *i.e.* they are perpendicular to the arrow
- this is the main problem of PCA, as community data are *nonlinear*
- in general, PCA should not be used for community data
- PCA is useful for linear data
- can be used to derive new combined variables for other analyses when PCA explains a large proportion of variance
- often displays a 'horseshoe' effect, indicating a non-linear response

Self study of PCA

Replicate the analysis shown above on the

1. The Doubs River data

* DoubsEnv.csv ... the environmental data

2. The Seaweed Data

* ordiStat_58_v2.0.RData ... the environmental data

Notes:

- consult the book <u>Numerical Ecology with R</u> thoroughly
- you will need the **vegan** package
- the file cleanplot.pca.R is provided as it contains a function that you will use
- background reading to Doubs River data in <u>https://www.davidzeleny.net/anadat-r/doku.php/en:data:doubs</u>
- background reading to Seaweed data in Smit et al. (2017)
- submit the annotated R script next week Monday, 17 August 2020, at 23:55; make sure to include an explanation of the findings for both the Doubs River and Seaweed environmental data

FAQ

Question 1:

- One of the graphs are in a circle and the other does not. Why is this? What does the circle represent?

- What does the circle of equilibrium mean?

Question 2:

- Will the PCA plots always only have the two axis?

- To calculate the proportion of variance, do you only use the values of the which ever axis are shown (e.g. PC1 or PC2)?

Question 3:

- How do we compare variables between different sites exactly?

Question 4:

- What does the length of the arrows mean, why are some of them short and others longer?

Question 5:

- Why do some of the principal components produce negative values in their eigenvalues?

Question 6:

- Why should you standardise variables first before running PCA?

Question 7:

- Should you leave some variables unstandardised if you want certain variables to have more weighting than others?

Question 8:

- Can PCAs be used for things like GIS or molecular work involving large Datasets? In order to summarise climate data for ecological niche modeling.?

Question 9:

- I do not understanding why and how PCAs are relevant for certain datasets and not for others.

Question 10:

- Explain what the distance between objects mean?

Question 11:

- How do you know if the variables are positively or negatively correlated with one another by looking at the graph?