### TOPIC 9 UNCONSTRAINED ORDINATION: CORRESPONDENCE ANALYSIS

- see <u>https://sites.google.com/site/mb3gustame/indirect-gradient-analysis/ca</u> and <u>https://www.davidzeleny.net/anadat-r/doku.php/en:ca\_dca</u>
- also an eigenvector method
- handles nonlinear species responses better than PCA
  - therefore better for community data
- CA is based on similar regression techniques as PCA, but with  $\chi^2$ -standardised data and weights
  - (... i.e. PCA uses an intermediate correlation matrix)
- then subjected to either a Singular Value Decomposition (SVD) or eigenvalue decomposition, and the eigenvalues and eigenvectors reported
- the ordination preserves  $\chi^{2-}$  (D<sub>16</sub>) rather than Euclidian (D<sub>1</sub>) distance between sites
  - $\chi^2$ -distance is not influenced by double Os
  - no pre-transformation needed
  - suitable for species counts and presence/absence data
- CA maximises the correspondence between species scores and sample scores, whereas a PCA maximises the variance explained

- CA produces one axis fewer than min[n, p]
- as with PCA, orthogonal axes ranked in **decreasing order of importance**
- the variation represented is the total inertia, which is the SS of all the values in the  $\chi^2$  matrix
  - (... i.e. not the sum of the eigenvalues along the diagonal as in a PCA)
- individual eigenvalues will always be <1
- the variation represented along an axis is given by dividing the eigenvalues of the axis by the total inertia

- CA approximates a **unimodal** response model
  - i.e. matches gradients better (fits better to env. data)
  - the species scores give the species maximum and the abundance decreases in every direction from the centroid of the species score
    - (... in PCA species close to the origin (zero) change little and is poorly presented by the ordination, but in CA it may have its optimum there)
- the horseshoe effect is weaker, but still not entirely gone

- scaling of ordination plots
  - **scaling 1**—site scaling (rows the centroids of columns)
    - i.e. sites that plot close together are similar i.t.o. their species relative frequencies
    - any site near a point representing a species will have a relatively large contribution by that species
  - **scaling 2**—species scaling (columns are the centroids of rows)
    - i.e. species points that are close together will have relatively similar frequencies among the objects (sites)
    - any species plotting close-by a point that represents a site is more likely to be found at that object, or have a higher frequency there than at sites appearing further away in the ordination plot

| > :                 | spe         |             |             |             |             |             |             |             |             |             |             |             |                  |             |             |             |             |             |             |             |
|---------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| # A tibble: 29 x 27 |             |             |             |             |             |             |             |             |             |             |             |             |                  |             |             |             |             |             |             |             |
|                     | Cogo        | Satr        | Phph        | Babl        | Thth        | Teso        | Chna        | Pato        | Lele        | Sqce        | Baba        | Albi        | Gogo             | Eslu        | Pefl        | Rham        | Legi        | Scer        | Суса        | Titi        |
|                     | <int></int> | <int> &lt;</int> | <int></int> |
| 1                   | 0           | 3           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0                | 0           | 0           | 0           | 0           | 0           | 0           | 0           |
| 2                   | 0           | 5           | 4           | 3           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0                | 0           | 0           | 0           | 0           | 0           | 0           | 0           |
| 3                   | 0           | 5           | 5           | 5           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0                | 1           | 0           | 0           | 0           | 0           | 0           | 0           |
| 4                   | 0           | 4           | 5           | 5           | 0           | 0           | 0           | 0           | 0           | 1           | 0           | 0           | 1                | 2           | 2           | 0           | 0           | 0           | 0           | 1           |
| 5                   | 0           | 2           | 3           | 2           | 0           | 0           | 0           | 0           | 5           | 2           | 0           | 0           | 2                | 4           | 4           | 0           | 0           | 2           | 0           | 3           |
| 6                   | 0           | 3           | 4           | 5           | 0           | 0           | 0           | 0           | 1           | 2           | 0           | 0           | 1                | 1           | 1           | 0           | 0           | 0           | 0           | 2           |
| 7                   | 0           | 5           | 4           | 5           | 0           | 0           | 0           | 0           | 1           | 1           | 0           | 0           | 0                | 0           | 0           | 0           | 0           | 0           | 0           | 0           |
| 8                   | 0           | 0           | 1           | 3           | 0           | 0           | 0           | 0           | 0           | 5           | 0           | 0           | 0                | 0           | 0           | 0           | 0           | 0           | 0           | 1           |
| 9                   | 0           | 1           | 4           | 4           | 0           | 0           | 0           | 0           | 2           | 2           | 0           | 0           | 1                | 0           | 0           | 0           | 0           | 0           | 0           | 0           |
| 10                  | 1           | 3           | 4           | 1           | 1           | 0           | 0           | 0           | 0           | 1           | 0           | 0           | 0                | 0           | 0           | 0           | 0           | 0           | 0           | 0           |
| #                   | wit         | :h 19 m     | nore ro     | ows, ar     | nd 7 ma     | ore vai     | riables     | : Abbr      | <int></int> | , Icme      | <int></int> | , Gyce      | <int>,</int>     | Ruru        | <int></int> | , Blbj      | <int></int> | , Alal      | <int></int> | 1           |
| #                   | Anan        | <int></int> |             |             |             |             |             |             |             |             |             |             |                  |             |             |             |             |             |             |             |

> (spe.ca <- cca(spe))
Call: cca(X = spe)</pre>

Inertia Rank Total 1.167 Unconstrained 1.167 26 Inertia is scaled Chi-square

Eigenvalues for unconstrained axes:

CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 0.6010 0.1444 0.1073 0.0834 0.0516 0.0418 0.0339 0.0288 (Showed only 8 of all 26 unconstrained eigenvalues)

| <pre>&gt; summary(spe.ca)</pre>                                        | # default scaling 2                                                                                   |  |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Call:<br>cca(X = spe)                                                  |                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |
| Partitioning of scaled Chi-square:                                     |                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |
| Inertia                                                                | Proportion                                                                                            |  |  |  |  |  |  |  |  |  |  |  |
|                                                                        |                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |
| Unconstrained 1.16/                                                    | 1                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |
| Eigenvalues, and their contribution to the scaled Chi-square           |                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |
| Importance of component                                                | nts:                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                        | CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9 CA10 CA11 CA12                                                    |  |  |  |  |  |  |  |  |  |  |  |
| Eigenvalue                                                             | 0.601 0.1444 0.10729 0.08337 0.05158 0.04185 0.03389 0.02883 0.01684 0.010826 0.010142 0.007886       |  |  |  |  |  |  |  |  |  |  |  |
| Proportion Explained                                                   | 0.515 0.1237 0.09195 0.07145 0.04420 0.03586 0.02904 0.02470 0.01443 0.009278 0.008691 0.006758       |  |  |  |  |  |  |  |  |  |  |  |
| Cumulative Proportion                                                  | 0.515 0.6387 0.73069 0.80214 0.84634 0.88220 0.91124 0.93594 0.95038 0.959655 0.968346 0.975104       |  |  |  |  |  |  |  |  |  |  |  |
|                                                                        | CA13 CA14 CA15 CA16 CA17 CA18 CA19 CA20 CA21 CA22 CA23                                                |  |  |  |  |  |  |  |  |  |  |  |
| Eigenvalue                                                             | 0.006123 0.004867 0.004606 0.003844 0.003067 0.001823 0.001642 0.001295 0.0008775 0.0004217 0.0002149 |  |  |  |  |  |  |  |  |  |  |  |
| Proportion Explained                                                   | 0.005247 0.004171 0.003948 0.003294 0.002629 0.001562 0.001407 0.001110 0.0007520 0.0003614 0.0001841 |  |  |  |  |  |  |  |  |  |  |  |
| Cumulative Proportion                                                  | 0.980351 0.984522 0.988470 0.991764 0.994393 0.995955 0.997362 0.998472 0.9992238 0.9995852 0.9997693 |  |  |  |  |  |  |  |  |  |  |  |
|                                                                        | CA24 CA25 CA26                                                                                        |  |  |  |  |  |  |  |  |  |  |  |
| Eigenvalue                                                             | 0.0001528 8.949e-05 2.695e-05                                                                         |  |  |  |  |  |  |  |  |  |  |  |
| Proportion Explained 0.0001309 7.669e-05 2.310e-05                     |                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |
| Cumulative Proportion 0.9999002 1.000e+00 1.000e+00                    |                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |
| Scaling 2 for species<br>* Species are scaled<br>* Sites are unscaled: | and site scores<br>proportional to eigenvalues<br>weighted dispersion equal on all dimensions         |  |  |  |  |  |  |  |  |  |  |  |

#### ...continue

Species scores

| Cogo 1.50075 -1.410293 0.26049 -0.307203 0.271777 -0.<br>Satr 1.66167 0.444129 0.57571 0.166073 -0.261870 -0. | 003465<br>326590<br>200732 |
|---------------------------------------------------------------------------------------------------------------|----------------------------|
| Satr 1.66167 0.444129 0.57571 0.166073 -0.261870 -0.                                                          | 326590<br>200732           |
|                                                                                                               | 200732                     |
| Phph 1.28545 0.285328 -0.04768 0.018126 0.043847 0.                                                           |                            |
| Babl 0.98662 0.360900 -0.35265 -0.009021 -0.012231 0.                                                         | 253429                     |
| Thth 1.55554 -1.389752 0.80505 -0.468471 0.471301 0.                                                          | 225409                     |
| Teso 0.99709 -1.479902 -0.48035 0.079397 -0.105715 -0.                                                        | 332445                     |
| Chna -0.54916 -0.051534 0.01123 -0.096004 -0.382763 0.                                                        | 134807                     |
| Pato -0.18478 -0.437710 -0.57438 0.424267 -0.587150 0.                                                        | 091866                     |
| Lele 0.01337 -0.095342 -0.57672 0.212017 0.126668 -0.                                                         | 389103                     |
| Sqce 0.01078 0.140577 -0.34811 -0.538268 0.185286 0.                                                          | 167087                     |
| Baba -0.33363 -0.300682 -0.04929 0.170961 -0.157203 0.                                                        | 103068                     |
| Albi -0.38357 -0.255310 -0.20136 0.374057 -0.385866 0.                                                        | 239001                     |
| Gogo -0.32152 -0.034382 -0.07423 -0.031236 0.014417 -0.                                                       | 156351                     |
| Eslu -0.26165 0.187282 0.00617 0.183771 0.295142 -0.                                                          | 262808                     |
| Pefl -0.28913 0.121044 -0.18919 0.367615 0.218087 -0.                                                         | 163675                     |
| Rham -0.60298 -0.057369 0.20341 0.214299 -0.050977 0.                                                         | 211926                     |
| Legi -0.58669 -0.082467 0.21198 0.050175 -0.120456 0.                                                         | 108724                     |
| Scer -0.61815 0.124733 0.13339 0.147190 0.317736 -0.                                                          | 340380                     |
| Cyca -0.57951 -0.110732 0.20173 0.308547 0.006854 0.                                                          | 153224                     |
| Titi -0.37880 0.138023 -0.07825 0.095793 0.256285 -0.                                                         | 029245                     |
| Abbr -0.70235 0.011155 0.40242 0.211582 0.138186 0.                                                           | 132297                     |
| Icme -0.73238 -0.009098 0.55678 0.321852 0.281812 0.                                                          | 172271                     |
| Gyce -0.69300 0.038971 0.37688 -0.183965 -0.051945 -0.                                                        | 011126                     |
| Ruru -0.44181 0.176915 -0.23691 -0.345104 0.129676 -0.                                                        | 043802                     |
| Blbj -0.70928 0.032317 0.40924 0.030224 0.049050 0.                                                           | 114560                     |
| Alal -0.63114 0.053594 0.15204 -0.661381 -0.414796 -0.                                                        | 206611                     |
| Anan -0.63578 -0.041894 0.30093 0.224044 0.030444 0.                                                          | 203160                     |

continue...

#### ...continue

| Site  | scores   | (weig         | ghted  | aver | ages  | of sp | peci | es sco | ores)    |          |  |
|-------|----------|---------------|--------|------|-------|-------|------|--------|----------|----------|--|
|       | C        | CA1           | С      | A2   |       | CA3   |      | CA4    | CA5      | CA6      |  |
| sit1  | 2.764    | 88 3          | 3.0763 | 06   | 5.365 | 57489 | 1.   | 99192  | -5.07714 | -7.80447 |  |
| sit2  | 2.275    | 540 2         | 2.5655 | 31   | 1.265 | 59130 | 0.   | 87538  | -1.89139 | -0.13887 |  |
| sit3  | 2.018    | 323 2         | 2.4412 | 24   | 0.514 | 4079  | 0.   | 79436  | -1.03741 | 0.56015  |  |
| sit4  | 1.284    | 85 1          | 1.9356 | 64 - | 0.250 | 9482  | 0.   | 76470  | 0.54752  | 0.10579  |  |
| sit5  | 0.088    | 375 1         | 1.0151 | 82 - | 1.455 | 5434  | 0.   | 47672  | 2.69249  | -2.92498 |  |
| sit6  | 1.031    | .88 1         | 1.7121 | 63 – | 0.954 | 4059  | 0.   | 01584  | 0.91932  | 0.39856  |  |
| sit7  | 1.914    | 27 2          | 2.2562 | 08 - | 0.000 | 1407  | 0.   | 39844  | -1.07017 | 0.32127  |  |
| sit8  | 0.255    | 5 <b>91</b> 1 | 1.4430 | 08 - | 2.577 | 7721  | -3.  | 41400  | 2.36613  | 2.71741  |  |
| sit9  | 1.245    | 517 1         | 1.5263 | 91 - | 1.963 | 35663 | -0.  | 41230  | 0.69647  | 1.51859  |  |
| sit10 | 2.145    | 601 0         | 0.1102 | 78   | 1.610 | 8693  | -0.  | 82023  | 0.53918  | 1.01153  |  |
| sit11 | 2.174    | 18 -0         | 0.2516 | 49   | 1.584 | 5397  | -0.  | 81483  | 0.52623  | 1.05501  |  |
| sit12 | 2.309    | 944 -2        | 2.0344 | 39   | 1.918 | 31448 | -0.  | 60481  | 0.64435  | -0.14844 |  |
| sit13 | 1.871    | 41 -2         | 2.2625 | 03   | 1.106 | 6796  | -0.  | 80840  | 1.09542  | 0.11038  |  |
| sit14 | 1.346    | 59 -1         | 1.8059 | 67 – | 0.644 | 1505  | -0.  | 52803  | 0.76871  | -0.67165 |  |
| sit15 | 0.702    | 214 -1        | 1.5011 | 67 – | 1.973 | 35888 | 0.   | 98502  | -0.93585 | -1.27168 |  |
| sit16 | 0.287    | 75 -0         | 0.8368 | 03 - | 1.225 | 59108 | 0.   | 73302  | -1.57036 | 0.57315  |  |
| sit17 | 0.052    | 299 -6        | 0.6479 | 50 - | 0.923 | 34228 | 0.   | 35770  | -0.95401 | 0.77738  |  |
| sit18 | 8 -0.205 | 584 -6        | 0.0072 | 52 - | 1.015 | 54343 | 0.   | 07041  | -1.03450 | 0.51442  |  |
| sit19 | -0.578   | 879 (         | 0.0428 | 49 - | 0.366 | 0551  | -0.  | 15019  | -0.61357 | 0.10115  |  |
| sit20 | 0.673    | 820 6         | 0.0388 | 75   | 0.119 | 4956  | 0.   | 17256  | -0.14686 | -0.12018 |  |
| sit21 | -0.719   | 933 (         | 0.0146 | 94   | 0.220 | 4186  | 0.   | 13598  | 0.09459  | -0.02068 |  |
| sit22 | -0.704   | 38 (          | 0.7353 | 98 - | 0.654 | 6250  | -6.  | 61523  | -2.49441 | -1.73215 |  |
| sit23 | 9 -0.839 | 76 (          | 0.3901 | 20   | 0.560 | 5295  | -4.  | 38864  | -2.56916 | -0.96702 |  |
| sit24 | -0.684   | 76 (          | 0.4188 | 42 - | 0.286 | 60819 | -2.  | 80336  | -0.37540 | -3.93791 |  |
| sit25 | -0.758   | 808 6         | 0.2102 | 04   | 0.589 | 4091  | -0.  | 70004  | -0.01880 | -0.10779 |  |
| sit26 | -0.750   | )46 (         | 0.1008 | 69   | 0.553 | 31191 | -0.  | 12946  | 0.29164  | 0.11280  |  |
| sit27 | / -0.778 | 878 (         | 0.0889 | 76   | 0.737 | 9012  | 0.   | 05204  | 0.40940  | 0.43236  |  |
| sit28 | 8 -0.608 | 815 -0        | 0.2032 | 35   | 0.552 | 2726  | 0.   | 43621  | 0.15010  | 0.25618  |  |
| sit29 | -0.808   | 860 -0        | 0.0195 | 92   | 0.668 | 36542 | 0.   | 88136  | 0.52744  | 0.16456  |  |
|       |          |               |        |      |       |       |      |        |          |          |  |



site scaling

- most interested in sites
- sites that plot close together are similar i.t.o. their species relative frequencies
- any site near a point representing a species will have a relatively large contribution by that species
- species scaling
- most interested in species
- species points that are close together will have relatively similar frequencies among the objects (sites)

sit1

sit3

sit10

sit11

sit12

3

sit13

2

sit7

Satr

sit14

1

sit4

sit9

· species plotting close-by a point that represents an object (site) are more likely to be found at that object, or have a higher frequency there than at objects appearing further away in the ordination plot

Fit and Plot Smooth Surfaces of Variables on Ordination

```
require('viridis')
palette(viridis(8))
par(mar = c(4, 4, 0.9, 0.5) + .1, mfrow = c(2, 2))
with(spe, tmp <- ordisurf(spe.ca ~ Satr, bubble = 3,</pre>
                           family = quasipoisson, knots = 2, col = 6,
                           display = "sites", main = "Satr"))
abline(h = 0, v = 0, lty = 3)
with(spe, tmp <- ordisurf(spe.ca ~ Scer, bubble = 3,</pre>
                           family = quasipoisson, knots = 2, col = 6,
                           display = "sites", main = "Scer"))
abline(h = 0, v = 0, lty = 3)
with(spe, tmp <- ordisurf(spe.ca ~ Teso, bubble = 3,</pre>
                           family = quasipoisson, knots = 2, col = 6,
                          display = "sites", main = "Teso"))
abline(h = 0, v = 0, lty = 3)
with(spe, tmp <- ordisurf(spe.ca ~ Cogo, bubble = 3,</pre>
                           family = quasipoisson, knots = 2, col = 6,
                           display = "sites", main = "Cogo"))
abline(h = 0, v = 0, lty = 3)
# A posteriori projection of environmental variables in a CA
# The last plot produced (CA scaling 2) must be active
(spe.ca.env <- envfit(spe.ca, env, scaling = 2)) # Scaling 2 is default</pre>
plot(spe.ca.env)
# Plot significant variables with a different colour
plot(spe.ca.env, p.max = 0.05, col = "red")
```



