Using the untidy data (SACTN2) and the tidy data (SACTN2_tidy), create line graphs, one for each of DEA, SAWS, and KZNSB, showing a time series of temperature. Ensure you have a column of three figures (ncol = 1). Use the fewest number of lines of code possible. You should end up with two graphs, each with three panels. (/13)
Answer
library(tidyverse)load("../data/SACTN_mangled.RData") # ✓SACTN2_tidy <-pivot_longer(SACTN2, cols =c("DEA", "KZNSB", "SAWS"),names_to ="src",values_to ="temp") # ✓# Starting with SACTN2: one could be sneaky and cheat by using# 'pivot_wider()' in the pipelineSACTN2 |># ✓ x 6pivot_longer(cols =c("DEA", "KZNSB", "SAWS"),names_to ="src",values_to ="temp") |>ggplot(aes(x = date, y = temp)) +geom_line(aes(col = site, linetype = type)) +facet_wrap(~ src, ncol =1) +labs(title ="Untidy Data", # ✓x ="Date", y ="Temperature (°C)")
# For the untidy data, above, I'll also allocate marks if you insisted in # creating more work for yourself by doing it the long way.... ( # ✓ x 7)# Starting with SACTN2_tidy# (creates an identical plot)ggplot(data = SACTN2_tidy, aes(x = date, y = temp)) +# ✓ x 4geom_line(aes(col = site, linetype = type)) +facet_wrap(~ src, ncol =1) +labs(title ="Tidy Data", # ✓x ="Date", y ="Temperature (°C)")
---title: "BCB744 Bonus Task"format: html: fig-format: svg fig_retina: 2 fig-dpi: 400params: hide_answers: false---# [[Assessment Sheet](BCB744_Task_Bonus_Surname.xlsx)]{.my-highlight} {#sec-assessment}# 12--14. Tidy Data## Question 1What are the key principles of tidy data? **(/3)**`r if (params$hide_answers) "::: {.content-hidden}"`**Answer**- ✓ Each variable forms a column.- ✓ Each observation forms a row.- ✓ Each type of observational unit forms a table.```{r, echo=FALSE,eval=FALSE,warning=FALSE,message=FALSE,fig.width=6,fig.asp=0.65,out.width="80%",fig.align='center'}````r if (params$hide_answers) ":::"`## Question 2Using the untidy data (`SACTN2`) and the tidy data (`SACTN2_tidy`), create line graphs, one for each of DEA, SAWS, and KZNSB, showing a time series of temperature. Ensure you have a column of three figures (ncol = 1). Use the fewest number of lines of code possible. You should end up with two graphs, each with three panels. **(/13)**`r if (params$hide_answers) "::: {.content-hidden}"`**Answer**```{r, echo=TRUE,eval=TRUE,warning=FALSE,message=FALSE,fig.width=6,fig.asp=0.65,out.width="80%",fig.align='center'}library(tidyverse)load("../data/SACTN_mangled.RData") # ✓SACTN2_tidy <-pivot_longer(SACTN2, cols =c("DEA", "KZNSB", "SAWS"),names_to ="src",values_to ="temp") # ✓# Starting with SACTN2: one could be sneaky and cheat by using# 'pivot_wider()' in the pipelineSACTN2 |># ✓ x 6pivot_longer(cols =c("DEA", "KZNSB", "SAWS"),names_to ="src",values_to ="temp") |>ggplot(aes(x = date, y = temp)) +geom_line(aes(col = site, linetype = type)) +facet_wrap(~ src, ncol =1) +labs(title ="Untidy Data", # ✓x ="Date", y ="Temperature (°C)")# For the untidy data, above, I'll also allocate marks if you insisted in # creating more work for yourself by doing it the long way.... ( # ✓ x 7)# Starting with SACTN2_tidy# (creates an identical plot)ggplot(data = SACTN2_tidy, aes(x = date, y = temp)) +# ✓ x 4geom_line(aes(col = site, linetype = type)) +facet_wrap(~ src, ncol =1) +labs(title ="Tidy Data", # ✓x ="Date", y ="Temperature (°C)")````r if (params$hide_answers) ":::"`